期刊文献+

基于事务标识符序列的频繁集发现方法

Method for Finding Frequent Set Based on Transaction Identifier Sequence
在线阅读 下载PDF
导出
摘要 字符串比较是计算机信息处理的重要方法之一。针对现有关联规则挖掘算法不能记忆及利用历史挖掘成果的局限性,提出了将事务数据库转化为项目数据库,构造项目的支持事务标识符有序序列方法。为提高挖掘效率,减少串处理效率较低的负面影响,给出了双序列串比较算法,以及针对串比较的大项目频繁集发现方法。 Character string comparing is an important method in computer information managing. To solve the localization question of current algorithms for mining association rule not to save and use historical mining harvest, a method is present that transaction database is translated item database, and supporting transaction identifier sequence is constructed. An algorithm for comparing double sequence strings and a method of finding bigger frequent item set based on string comparing are given in order to improve mining efficiency and decrease negative influence that string comparing' efficiency is lower.
出处 《安阳工学院学报》 2008年第2期48-51,共4页 Journal of Anyang Institute of Technology
关键词 事务数据库 项目数据库 支持事务标识符序列 双序列串比较 Transaction database Item database Support transaction identifier sequence double sequencestrings comparing
作者简介 邓铁军(1971-),男,辽宁沈阳人,辽宁林业职业技术学院信息工程系讲师。主要研究方向:网络安全及计算机通信,信息安全,多媒体信号处理。
  • 相关文献

参考文献3

二级参考文献28

  • 1陈莉,焦李成.基于自适应聚类的数据预处理算法I[J].计算机应用与软件,2005,22(3):28-29. 被引量:9
  • 2陈凯,冯全源.基于矩阵伪投影策略的频繁项集挖掘方法[J].微计算机信息,2005,21(11X):85-87. 被引量:8
  • 3[1]Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large database[C]. In: Proc. of the ACM SIGMOD Conference on Man agent of data, 1993,207-216.
  • 4[2]Pasquoer N, Bastide Y, Taouil R. Effictient mining of association rules using closed itemset lattices[J]. Information Systems, 1999,24(1): 25-46.
  • 5[3]Han Eui-hong, George Karypis & vipin Kumar. Scalable parallel data mining for mining association rules[J]. IEEE Trans. on Knowledge and Data Engineering, 2000, 12(3): 337-352.
  • 6[4]Zaki M J. Scalable Algorithms for association mining[J]. IEEE Trans. on Knowledge and Data Engineering,2000,12(3): 372-390.
  • 7[5]Fernando Berzal, Juan-Carlos Cubero, Nicolas Marin, TBAR: An efficient method for association rule mining in relational databases[J]. Data & Knowledge Engineering,2001,37, 47-64.
  • 8[6]Han Jia-wei, Micheline Kambr. Data mining concepts and techniques[M]. Beijing: Higher Education Press, 2001, 255-279 .
  • 9AGRAWAL R, IMICLINSKI T, SWAMI A. Database mining: a performance perspective [J]. IEEE Trans Knowledge and Data Enginnering, 1993,5:914-925.
  • 10AGRAWAL R, SRIKANT R. Fast algorithm for mining association rules [A]. MICHAEL L. Proceeding 1994 International conference Very Large Data Bases [C].Santiago, Chile: The ACM SIGMOD Anthology,1994. 487-499.

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部