期刊文献+

基于关联规则的网络入侵检测方法 被引量:4

Association Rules Based Network Intrusion Detection Method
在线阅读 下载PDF
导出
摘要 介绍了基于关系代数理论的ORAR关联规则算法,分析了在KDDCUP99中选择训练数据集和选择特征的基本方法,并在此基础上利用ORAR算法进行了频繁3、4、5、6项集入侵模式的挖掘,将挖掘结果应用于测试数据集的入侵检测,从检测的准确率和误检率两个方面较为系统地对不同的频繁项集检测的结果进行了比较,得到了检测效果最好的频繁项集,仿真结果对于入侵检测方法的进一步研究具有积极的借鉴意义。 ORAR association rules algorithm based on relation algebra theory is introduced. The basic method of selecting disciplined data set and features in KDD CUP 99 is analyzed. With ORAR algorithm, the mining aims at frequent three item sets, frequent four item sets, frequent five item sets, and frequent six item set. The mining patterns are used to test data collection, the results are compared according to the accuracy rate and true false rate, and the best frequent item set is achieved.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2009年第S1期94-96,共3页 Journal of University of Electronic Science and Technology of China
关键词 频繁模式 入侵检测 KDD99 ORAR frequent pattern intrusion detection KDD99 ORAR
  • 相关文献

参考文献10

  • 1陈莉,焦李成.基于关系代数的关联规则挖掘算法[J].西北大学学报(自然科学版),2005,35(6):691-694. 被引量:16
  • 2AGRAWAL R,IMICLINSKI T,SWAM I A.Database mining:a performance perspective. IEEE Trans Knowledge and Data Enginnering . 1993
  • 3MANNILA H,TOVIVONEN H,VERKAMO A I.Efficient algorithm for discovering association rules. Proceedings AAAI’94Workshop Knowledge Discovery in Databases . 1994
  • 4AGRAWAL R,SHAFER J C.Parallel mining of association rules:design,implementation,and experience. IEEE Transactions on Knowledge and Data Engineering . 1996
  • 5KDD CUP99.KDD Cup99dataset. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html . 2009
  • 6Anderson JP.Computer Security Threat Monitoring and Surveillance. Technical Report, TR80904 . 1980
  • 7Dorothy E Denning.An intrusion-detection model. IEEE Transactions on Software Engineering . 1987
  • 8Roesch. M.Snort - lightweight intrusion detection for networks. The 13th System Administration Conference . 1999
  • 9Agrawal R,Srikant R.Fast algorithm for mining association rules. Proceedings of the 20th International Conference on VLDB . 1994
  • 10HAN Eui -hong,KARYPIS GEORGE,KUMAR VIPIN.Scalable parallel data mining for association rules. Proc of SIGMOD ’ 97 AZ . 1997

二级参考文献14

  • 1陈莉,焦李成.基于自适应聚类的数据预处理算法I[J].计算机应用与软件,2005,22(3):28-29. 被引量:9
  • 2AGRAWAL R, IMICLINSKI T, SWAMI A. Database mining: a performance perspective [J]. IEEE Trans Knowledge and Data Enginnering, 1993,5:914-925.
  • 3AGRAWAL R, SRIKANT R. Fast algorithm for mining association rules [A]. MICHAEL L. Proceeding 1994 International conference Very Large Data Bases [C].Santiago, Chile: The ACM SIGMOD Anthology,1994. 487-499.
  • 4MANNILA H,TOVIVONEN H,VERKAMO A I. Efficient algorithm for discovering association rules [A]. MICHAEL L. Proceedings AAAI'94 Workshop Knowledge Discovery in Databases [C]. Seattle WA: The ACM SIGMOD Anthology,1994. 181-192.
  • 5AGRAWAL R, SHAFER J C. Parallel mining of association rules: design, implementation, and experience [J].IEEE Trans Knowledge and Data Engineering, 1996,8:962-969.
  • 6HAN Eui-hong, GEORGE K, KUMAR V. Scalable parallel data mining for association rules [A]. MICHAEL L. Proceeding of the ACM SIGMOD97 [C]. AZ USA:The ACM SIGMOD Anthology, 1997. 277-288.
  • 7AGRAWAL R, SRIKANT R. Mining sequential patterns[A]. MICHAEL L. Proceeding of International Conference Data Engineering 1995[C]. Taibei:The ACM SIGMOD Anthology, 1995.3-14.
  • 8KOPERSKI K, HAN J. Discovery of spatial association rules in geographic information databases [A]. MICHAEL L. Proceedings 4th International Sympothsis Large Spatial Databases [C]. Portland ME: The ACMSIGMOD Anthology, 1995.47-66.
  • 9LU H, HAN J W, FENG L. Stock movement and n-dimentional inter-transaction association rules [A]. MICHAEL L. Proceeding SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery [C].Seattle WA: The ACM SIGMOD Anthology, 1998.1-7.
  • 10BAYARDO R J. Efficiently mining long patterns from databases[A]. MICHAEL L. Proceedings ACM-SIGMOD International Conference Management of Data[C]. Seattle WA: The ACM SIGMOD Anthology, 1998. 85-93.

共引文献15

同被引文献13

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部