期刊文献+

基于v-SVR算法的岩爆预测分析 被引量:26

Rockburst prediction analysis based on v-SVR algorithm
在线阅读 下载PDF
导出
摘要 以预测地下工程岩爆发生为研究目的,在综合影响岩爆的关键因素的基础上,选取地下工程围岩最大切向应力、岩石单轴抗压、抗拉强度、弹性能量指数、围岩切向应力与围岩抗压强度比值、围岩抗压强度与其抗拉强度的比值作为岩爆预测的评判指标,建立了一种基于改进支持向量机算法(v-SVR)的岩爆预测方法,并利用国内外45个岩石地下工程实例进行学习,对另外的16个实例进行了预测,取得了较好的效果,其预测精度明显优于灰色理论和常规SVR算法,与GA-BP神经网络算法相近. In order to predict the rockburst occurrence of underground engineering, according to the collected data from actual underground rock project, selecting the wall rock' s maximal tangential stress, rock' s single axle tensile strength, rock' s single axle pressive strength, elasticity energy index, the ratio of rock' s single axle pressive strength and rock' s single axle tensile strength, and the ratio of wall rock' s maximal tangential stress and rock' s single axle pressive strength as the judging indexes of rock burst, a method for rockburst predicting model based on z, - SVR (support vector regression) was put forward. Applied the predicting model to predict rockburst of 16 underground rock engineering after learning with other 45 samples; the result is satisfactory. It is more accurate than a gray theory and classical SVR, and is resemble with GA-BP neural network algorithm.
出处 《煤炭学报》 EI CAS CSCD 北大核心 2008年第3期277-281,共5页 Journal of China Coal Society
基金 国家自然科学基金重点资助项目(50334060)
关键词 v-SVR 岩爆 预测 地下工程 模型参数 v-SVR rockburst prediction underground engineering parameter for model
作者简介 祝云华(1975-),男,湖南邵阳人,博士研究牛.Tel:023-65120736,E-mail:zhuyh75@sina.com
  • 相关文献

参考文献7

二级参考文献22

  • 1黄筑平,杨黎明,潘客麟.材料的动态损伤和失效[J].力学进展,1993,23(4):433-467. 被引量:46
  • 2冯夏庭,王泳嘉,卢世宗.边坡稳定性的神经网络估计[J].工程地质学报,1995,3(4):54-61. 被引量:116
  • 3余寿文.损伤断裂的宏细观过程(1994~1996年工作总结)[J].力学进展,1997,27(1):122-124. 被引量:14
  • 4王伟,人工神经网络原理,1995年,53页
  • 5VapnikVN.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 6Schǎlkopf B,Smola A,Williamson R C,et al. New support vector algorithms[J]. Neural Computation,2000,12(5):1 207-1 245.
  • 7Platt J. Fast training of support vector machines using sequential minimal optimization[A]. In:Advances in Kernel Methods-Support Vector Learning [C]. Cambridge,MA:MIT Press,1999. 185-208.
  • 8Browne M W. Cross-validation methods[J]. Journal of Mathematical Psychology,2000,44(1):108-132.
  • 9Gold C, Sollich P. Model selection for support vector machine classification[J]. Neurocomputing,2003,55(1/2):221-249.
  • 10Chalimourda A,Sch?lkopf B,Smola A J. Experimentally optimal ν in support vector regression for different noise models and parameter settings[J]. Neural Networks,2004,17(1):127-141.

共引文献182

同被引文献309

引证文献26

二级引证文献504

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部