期刊文献+

基于交叉验证的XGBoost算法在岩爆烈度分级预测中的适用性探讨 被引量:18

Discussion on the Applicability of XGBoost Algorithm Based on Cross Validation in Prediction of Rockburst Intensity Classification
在线阅读 下载PDF
导出
摘要 为解决机器学习算法在样本较少时,所得岩爆烈度等级的预测结果存在可靠性不足的问题,采用一种基于交叉验证的XG-Boost算法,并讨论其适用性。先选取岩石单轴抗压强度σc、单轴抗拉强度σt、洞室围岩最大切应力σθ、岩石弹性变形指数Wet以及岩体完整性系数KV等5个评价指标;再以国内外岩爆实例数据为样本,通过多次交叉验证计算XGBoost算法岩爆预测准确率,与支持向量机算法、随机森林算法所得准确率比较;最后对评价指标重要性进行分析。结果表明:1)在样本较少时,样本划分和排序的随机性对预测结果影响较大,通过多次交叉验证求取预测结果平均值,可提高结果可靠性;2)评价指标中KV与σθ重要性最大,σc重要性最小;3)XGBoost算法具有较高的预测准确率,在岩爆烈度分级预测中具有一定适用性。 In order to solve the problem that when the samples are few,the reliability of the prediction results of rockburst intensity classification obtained by machine learning algorithms is insufficient,a XGBoost algorithm based on multiple cross validation is adopted and the applicability is discussed.Firstly,five factors including the rock uniaxial compressive strength σc,the uniaxial tensile strength σt,the maximum tangential stress of the surrounding cave σθ,the elastic deformation index Wet and the integrality coefficient of rock KV are selected as evaluation indexes.Then taking several rockburst instance data at home and abroad as samples,the rockburst prediction accuracy of XGBoost algorithm is calculated through multiple cross validation,and comparing with the accuracy obtained by support vector machine algorithm and random forest algorithm.Finally,the importance of evaluation indexes is analyzed.The results show that:(1) When with a small number of samples,the randomness of division and sorting for samples has great influence on prediction results,and the reliability of the results can be improved by calculating the average values of the prediction results through multiple cross validation.(2) Among the evaluation indexes,KV and σθ are the most important,while σc is the least important.(3) Due to high prediction accuracy,XGBoost algorithm has some applicability in the field of rockburst intensity classification prediction.
作者 张钧博 何川 严健 吴枋胤 蒙伟 ZHANG Junbo;HE Chuan;YAN Jian;WU Fangyin;MENG Wei(Key Laboratory of Transportation Tunnel Engineering,Ministry of Education,Southwest Jiaotong University,Chengdu 610031,Sichuan,China)
出处 《隧道建设(中英文)》 北大核心 2020年第S01期247-253,共7页 Tunnel Construction
基金 国家自然科学基金(51878571)
关键词 岩爆预测 交叉验证 XGBoost 可靠性分析 指标重要性 rockburst prediction cross validation XGBoost reliability analysis index importance
作者简介 第一作者:张钧博(1995—),男,四川阆中人,西南交通大学桥梁与隧道工程专业在读硕士,研究方向为隧道与地下工程,E-mail:441264165@qq.com。;通信作者:严健,E-mail:sharefuture33@163.com。
  • 相关文献

参考文献16

二级参考文献243

共引文献864

同被引文献294

引证文献18

二级引证文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部