期刊文献+

常曲率空间中全测地子流形的充分条件 被引量:1

Sufficient conditions for totally geodesic submanifolds of constantly curved spaces
在线阅读 下载PDF
导出
摘要 利用子流形的Ricci曲率、截面曲率或数量曲率,给出了常曲率空间中紧致极小子流形M^n是全测地子流形的充分条件. Sufficient conditions for compact minimal submanifolds of constantly curved spaces to be totally geodesic ones are given and these conditions concerned the qualities of submanifolds such as Ricci curvature, scalar curvature and sectional curvature.
作者 刘建成 独力
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第1期125-127,共3页 Journal of Lanzhou University(Natural Sciences)
基金 国家自然科学基金(10571129) 西北师范大学重点学科(基础数学)基金资助
关键词 全测地子流形 RICCI曲率 截面曲率 数量曲率 totally geodesic submanifold Ricci curvature sectional curvature scalar curvature
作者简介 刘建成(1968-),男,甘肃镇原人,教授,博士,研究方向为整体微分几何与几何分析,e-mail:liujc@nwnu.edu.cn.
  • 相关文献

参考文献7

  • 1YAU S T. Submanifolds with constant mean curvature (Ⅱ)[J]. Amer J Math, 1975, 97(1): 76-100.
  • 2舒世昌,刘三阳.双曲空间H^(n+p)(-1)中具常数量曲率的完备子流形(英文)[J].数学进展,2006,35(2):155-166. 被引量:4
  • 3II An-min, LI Ji-min. An intrinsic rigidity theorem for minimal submanifolds in a sphere[J]. Arch Math, 1992, 58: 582-594.
  • 4纪永强.球空间 S^(n+p)(c)中的紧致极小子流形[J].数学杂志,1990,10(4):391-396. 被引量:8
  • 5莫小欢.常曲率空间中具有平行平均曲率向量的子流形[J].数学年刊:A辑,1988,9(5):530-540.
  • 6WANG Qiao-ling, XIA Chang-yu. Rigidity theorems for closed hypersurfaces in a unit sphere[J]. J Geom Phys, 2005, 55: 227-240.
  • 7CHENG Qing-ming. Submanifolds with constant scalar curvature[J]. Proc Royal Society Edinbergh, 2002, 132:1 163-1 183.

二级参考文献12

  • 1Shen Yibing.Complete submanifolds in Rn+p with parallel mean curvature vector[J].Chin.Ann.of Math.,1985,3(6B):345-350.
  • 2Xu H W.A rigidity theorem for submanifolds with parallel mean curvature vector in a sphere[J].Arch.Math.,1993,61:489-496.
  • 3Yu Z H.Hypersurfaces in hyperbolic space with constant mean curvature[J].Chin.Ann.of Math.,1995,6(16A):709-716.
  • 4Cheng S T,Yau S T.Hypersurfaces with constant scalar curvature[J].Math.Ann.,1977,225:195-204.
  • 5Cheng Q M.Submanifolds with constant scalar curvatrue[J].Proc.Royal Society Edinbergh,2002,132:1163-1183.
  • 6Alencar H,do Carmo M P.Hypersurfaces with constant mean curvature in spheres[J].Proc.Amer.Math.Soc.,1994,120:1223-1229.
  • 7Omori H.Isometric immersion of Riemmanian manifolds[J].J.Math.Soc.Japan.,1967,19:205-214.
  • 8Yau S T.Harmonic functions on complete Riemannian manifolds[J].Comm.Pure and Appl.Math.,1975,28:201-228.
  • 9Santos W.Submanifolds with parallel mean curvature vector in Spheres[J].Tohoku Math.J.,1994,46:403-415.
  • 10Li A M,Li J M.An intrinsic rigidity theorem for minimal submanifolds in a sphere[J].Arch.Math.,1992,58:582-594.

共引文献24

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部