期刊文献+

基于模式学习的中文问答系统答案抽取方法 被引量:7

Answer extraction scheme for Chinese question answering system based on pattern learning
在线阅读 下载PDF
导出
摘要 答案抽取是中文问答系统的关键,而通常答案是借助于问题的答案句子模式抽取得到,由于答案句子模式是语言专家根据语言规则提炼获得,因此非常依赖于专家经验。针对这一局限性,提出了一种利用模式学习来获得中文答案句子模式的方法,该方法利用搜索引擎从互连网上检索相关问题文本,人工提取包含答案的句子段,并标注问题类型及答案,形成各种问题类型的问答训练语料。通过统计学习,提取候选答案句子模式,计算候选句子模式权重,并根据权重获得相应问题类型的答案句子模式。基于事实的问题答案抽取结果表明,提出的基于模式学习的方法有很好的效果,实验答案提取准确率值达到了0.28,学习方法获得的模式基本上覆盖了常规答案句子模式。 Answer extraction is the key of the Chinese questioning system. Normally answer extraction mainly depends on the pattern of the answer sentence. Since the pattern of the answer sentence is obtained by experts based on the language rules, so it strongly relies on the experts' language knowledge. To overcome this limit, a scheme is proposed to gain the pattern of the answer sentence by pattern learning. The scheme takes the advantage of searching engine to retrieve related documents of question. From these documents the sentences that include the answers are extracted. Then the types of the questions and answers are marked to form question-answer training corpus to the questions of different types. Then by statistic learning method, the candidates of sentence patterns are abstracted and the weights of the patterns are calculated. Thus, based on the weights the patterns of the answer sentences to the questions of different types are obtained. Answer extraction result of the factoid question shows that the experimental MRAR is up to 0.28, which indicates the effectiveness of the proposed pattern learning scheme. The patterns gained by pattern learning cover the normal answer sentences.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2008年第1期142-147,共6页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(60663004) 高等学校博士学科点专项科研基金项目(20050007023) 云南省中青年学术和技术带头人后备人才基金项目(2007PY01-11) 云南省教育厅基金项目(07Z11139) 昆明理工大学博士基金项目(2006-12)
关键词 计算机软件 问答系统 答案抽取 模式学习 模式匹配 computer software question answering system answer extracting pattern learning pattern matching
作者简介 余正涛(1970-),男,教授,博士.研究方向:自然语言处理,问答系统,信息提取.E—mail:ztyu@bit.edu.cn
  • 相关文献

参考文献13

  • 1郑实福,刘挺,秦兵,李生.自动问答综述[J].中文信息学报,2002,16(6):46-52. 被引量:168
  • 2Voorhees E,Tice D.The TREC-8 question answering track evaluation[C]//Proceedings of the 8th Text Retrieval Conference,Gaithersburg:NIST Special Publication,2000:83-105.
  • 3Voorhees E.Overview of the TREC 2003 question answering track[C]//Proceeding of the 11th Text Retrieval Conference,Gaithersburg:NIST Special Publication,2003:1-15.
  • 4Neumann Günter,Xu Fei-yu.Mining answers in German web pages[C]//Proceedings of the IEEE/WIC International Conference on Web Intelligence (WI03),2003:125-131.
  • 5Ferret O,Grau B,Hurault-Plantet M.Finding an answer based on the recognition of the question focus[C]//Proceeding of the 9th Text Retrieval Conference,Gaithersburg:NIST Special Publication,2001.
  • 6Kim Soo-Min,Baek Dae-Ho,Kim Sang-Beom,et al.Question answering considering semantic categories and co-occurrence density[C] // Proceedings of the 8th Text Retrieval Conference(TREC-9),Gaithersburg:NIST Special Publication,2000:317-325.
  • 7Clarke C L A,Cormack G V,Lynam T R.Exploiting redundancy in question answering[C] // Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval,New Orleans,Louisiana,USA.
  • 8Wu Li-de,Huang Xuan-jing,Niu Jun-yu,et al.FDU at TREC2002:filtering,Q&A,web and video tasks[C] //Proceedings of the 10th Text Retrieval Conference,Gaithersburg:NIST Special Publication,2002.
  • 9Wu Li-de,Huang Xuan-jing,Zhou Ya-qian,et al.FDUQA on TREC2003 QA task[C]//Proceedings of the 11th Text Retrieval Conference,Gaithersburg:NIST Special Publication,2003.
  • 10Soubbotin M M,Soubbotin S M.Use of patterns for dection of answer string:a systematic apporach[C]//Proceedings of the 10th Text Retrieval Conference,Gaithersburg:NIST Special Publication,2002.

二级参考文献38

  • 1Voorhees E.Overview of the TREC 2003 Question Answering Track[C].Proceeding of the 11^th Text Retrieval Conference,Gaithersburg:NIST,2003:1-15.
  • 2Voorhees E,Tice D.The TREC-8 Question Answering Track Evaluation[C].Proceedings the Eighth Text Retrieval Conference,NIST,2000:83-105.
  • 3Zhang Dell,Wee Sun Lee.Question Classification Using Support Vector Machines[C].Proceedings of the 26^th ACM SIGIR.ACM Press,2003.
  • 4Li Xin,Roth D,Small K.The Role of Semantic Information in Learning Question Classifiers[C].Proceedings of the 1^st International Joint Conference on Natural Language Processing,2004:451-457.
  • 5Chang Chihchung,Lin Chihjen.LIBSVM:A Library for Support Vector Machines[Z].《http://www.csie.ntu.edu.tw/~cjlin/libsvm》,2001.
  • 6Yu Zhengtao,Fan Xiaozhong,Son Lizhe,et al.Chinese Question Classification Combining Syntactic and Semantic Feature[C].Proceedings of the 6^th Internation Symposium on Test and Measurement.Dalian:International Academic Publishers,2005.
  • 7Wu Lide,Huang Xuanjing,Guo Y,et al.FDU at TREC-9:CLIR,Filtering and QA Tasks[C].Proceedings of the 9th Text Retrieval Conferernce,2001:189-203.
  • 8Wu Lide,Huang Xuanjing,Zhou Yaqian,et al.FDUQA on TREC2003 QA Task[C].The 12th Text Retrieval Conference,Gaithersburg:NIST,2003.
  • 9[8]Ulf Hermjakob. Parsing and Question Classification for Question Answering. Proceeding of the workshop on Open-Domain Question Answering at ACL-2001
  • 10[9]Eugene Agichtein, Steve Lawrence, Luis Gravano. Learning Search Engine Specific Query Transformations for Question Answering. ACM 2001,169- 178

共引文献213

同被引文献36

引证文献7

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部