期刊文献+

基于依存关系与支持向量机的中文问题分类方法 被引量:2

Chinese Question Classification Using SVM Based on Dependency Relations
在线阅读 下载PDF
导出
摘要 提出依存关系规则与统计方法相结合,实现了基于依存关系与支持向量机的问题分类机制.实验结果表明,支持向量机结合依存关系的特征抽取方法,能获得较高问句分类正确率. Dependency relation rules and statistical method are combined to classify questions.The results show that the feature extraction method using SVM based on dependency relations can get high classification accuracy.
出处 《郑州大学学报(理学版)》 CAS 北大核心 2009年第1期64-68,共5页 Journal of Zhengzhou University:Natural Science Edition
基金 国家863计划项目 编号2006AA10Z246 国家自然科学基金资助项目 编号60573043 广东省科技攻关项目 编号2007A020300010 华南农业大学校长基金资助项目 编号5600-K08010
关键词 问题分类 依存关系 命名实体识别 支持向量机 question classification dependency relation named entity recognition Support Vector Machine(SVM)
  • 相关文献

参考文献6

二级参考文献37

  • 1董振东,董强.知网和汉语研究[J].当代语言学,2001,3(1):33-44. 被引量:58
  • 2李明琴,李涓子,王作英,陆大.中文语义依存关系分析的统计模型(英文)[J].计算机学报,2004,27(12):1679-1687. 被引量:9
  • 3于洪,杨大春,吴中福.基于Rough set理论的增量式规则获取算法[J].小型微型计算机系统,2005,26(1):36-41. 被引量:4
  • 4张宇,刘挺,文勖.基于改进贝叶斯模型的问题分类[J].中文信息学报,2005,19(2):100-105. 被引量:47
  • 5郑实福.[D].哈尔滨:哈尔滨工业大学计算机科学与工程系,2002.
  • 6Li Xin, Roth Dan. Learning question classifier [A]. Proceedings of the 19th International Conference on Computational Linguistics [C]. Taipei: Morgan Kaufmann Publishers ,2002.556 - 562.
  • 7Li Xin, Roth Dan, Small Kevin. The role of semantic information in learning question classifiers [A]. Proceedings of the 1st International Joint Conference on Natural Language Processing [C]. Berlin: Spring-Verlag,2004.451 -458.
  • 8Zhang Dell, Lee Wee Sun. Question classification using support vector machines [A]. Proceedings of the 26th annual international ACM SIGIR Conference on Research and Development in Informaion Retrieval [C]. New York: ACM Press ,2003.26 - 32.
  • 9Hacioglu Kadri, Ward Wayne. Question classification using support vector machines and error correcting code[A]. Proceedings of HLT-NACCL 2003 [C]. Edmonton,2003.28 - 30.
  • 10Roth Dan, Cumby Chad, Li Xin, et al. Question-answering via enhanced understanding of questions [A]. Proceedings of the 1 1th Text Retrieval Conference [C]. Gait hersburg: NIST Special Publication, 2002. 667 - 676.

共引文献47

同被引文献19

  • 1张宇,刘挺,文勖.基于改进贝叶斯模型的问题分类[J].中文信息学报,2005,19(2):100-105. 被引量:47
  • 2文勖,张宇,刘挺,马金山.基于句法结构分析的中文问题分类[J].中文信息学报,2006,20(2):33-39. 被引量:83
  • 3李鑫,杜永萍.基于句法信息和语义信息的问题分类[c]//第一届全国信息检索与内容安全学术会议,2004:243-251.
  • 4VAPNIK V.Statistical learning theory[M].New York:John Wiley & Sons,1998.
  • 5LI Wen-min,HAN Jia-wei,PEI Jian.CMAR:accurate and efficient classification based on multiple class-association rules[C]//Proceedings of the 2001 IEEE International Conference on Data Mining.Washington DC:IEEE Computer Society,2001:369-376.
  • 6YIN Xiao-xin,HAN Jia-wei.CPAR:classification based on predictive association rules[C]//Proceedings of the SIAM International Conference on Data Mining.San Francisco,CA:SIAM,2003:331-335.
  • 7LIU Bing,HSU W,MA Yi-ming.Integrating classification and association rule mining[C]//AGRAWAL R,STOLORZ P.Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining.Menlo Park,CA:AAAI Press,1998:80-86.
  • 8TANG Yun-chun,JIN Bo,ZHANG Yan-qing.Granular support vector machine with association rules mining for protein homology prediction[-J].Artificial Intelligence in Medicine,2005,35 (1):121-134.
  • 9SHE Rong,CHEN Fei,WANG Ke,et al.Frequent-subsequence-based prediction of outer membrane proteins[C]// Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM Press,2003:436-445.
  • 10HAN Jia-wei,KAMBER M.Data mining:concept and techniques[M].Beijing:China Machine Press,2001.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部