摘要
对于含裂纹、孔洞、夹杂等各种微缺陷的平面各向异性复合材料,通过Bueckner功共轭积分的路径无关性和渐进特性,给出了Bueckner积分在这类材料中的解析表达式,并引入不同的辅助位移应力场,证明了功共轭积分与Jk积分和M积分存在简单的2倍关系,由此获得了含微缺陷各向异性材料中Jk积分和M积分的显式表达式.结果表明:当各个缺陷上不受任何外力作用时,对于沿包含所有微缺陷的闭合积分路径,Jk积分总是为0,而M积分则取决于材料常数、外加机械载荷、具体缺陷情况等所有断裂损伤因素.此项研究有望为描述微缺陷损伤的M积分方法提供理论基础.
Anisotropic composite materials with multiple defects are investigated, where a number of arbitrarily distributed defects, such as cracks, voids and inclusions are involved. The explicit expression of the Bueckner work conjugate integral is derived following the path-independence and the asymptotic features of the Bueckner integral. It is concluded that the value of the Bueckner integral is twice of that of the Jk-integral or the M-integral when the real physical field and the special complementary field are chosen integrals are obtained in the explicit forms due to establish the Bueckner integral. The Jk- and M- to the universal relations between the Bueckner integrals and the above invariant integrals, especially, both components of the Jk-integral vanish along the integral contour enclosing all the defects without the resultant force on each defect. However, the M-integral is significantly influenced by all the mechanical levels in multi-defect damaged anisotropic composite materials, e.g. the material properties, the remote loading condition, and the damaged factors, etc. The M-integral is expected to serve as a description of the fracture behavior of a multi-defect mechanical system in anisotropie materials.
出处
《西安交通大学学报》
EI
CAS
CSCD
北大核心
2008年第1期60-64,共5页
Journal of Xi'an Jiaotong University
基金
国家自然科学基金资助项目(10572110)
作者简介
李群(1980-),男,博士生.
王芳文(联系人),男,副教授.