期刊文献+

含微缺陷各向异性复合材料中的J_k积分和M积分 被引量:3

J_k-Integral and M-Integral in Anisotropic Composite Materials Containing Multiple Defects
在线阅读 下载PDF
导出
摘要 对于含裂纹、孔洞、夹杂等各种微缺陷的平面各向异性复合材料,通过Bueckner功共轭积分的路径无关性和渐进特性,给出了Bueckner积分在这类材料中的解析表达式,并引入不同的辅助位移应力场,证明了功共轭积分与Jk积分和M积分存在简单的2倍关系,由此获得了含微缺陷各向异性材料中Jk积分和M积分的显式表达式.结果表明:当各个缺陷上不受任何外力作用时,对于沿包含所有微缺陷的闭合积分路径,Jk积分总是为0,而M积分则取决于材料常数、外加机械载荷、具体缺陷情况等所有断裂损伤因素.此项研究有望为描述微缺陷损伤的M积分方法提供理论基础. Anisotropic composite materials with multiple defects are investigated, where a number of arbitrarily distributed defects, such as cracks, voids and inclusions are involved. The explicit expression of the Bueckner work conjugate integral is derived following the path-independence and the asymptotic features of the Bueckner integral. It is concluded that the value of the Bueckner integral is twice of that of the Jk-integral or the M-integral when the real physical field and the special complementary field are chosen integrals are obtained in the explicit forms due to establish the Bueckner integral. The Jk- and M- to the universal relations between the Bueckner integrals and the above invariant integrals, especially, both components of the Jk-integral vanish along the integral contour enclosing all the defects without the resultant force on each defect. However, the M-integral is significantly influenced by all the mechanical levels in multi-defect damaged anisotropic composite materials, e.g. the material properties, the remote loading condition, and the damaged factors, etc. The M-integral is expected to serve as a description of the fracture behavior of a multi-defect mechanical system in anisotropie materials.
作者 李群 王芳文
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2008年第1期60-64,共5页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(10572110)
关键词 复合材料 各向异性材料 微缺陷 Bueckner积分 Jk积分 M积分 composite anisotropic material defect Bueckner integral Jk-integral M-integral
作者简介 李群(1980-),男,博士生. 王芳文(联系人),男,副教授.
  • 相关文献

参考文献2

二级参考文献30

  • 1陈宜亨,赵利果.微裂纹屏蔽问题中守恒积分投影关系[J].力学学报,1997,29(1):47-53. 被引量:6
  • 2陈宜亨,ASME J Appl Mech,1994年,61卷,843页
  • 3陈宜亨,Int J Eng Sci,1994年,32卷,1037页
  • 4陈宜亨,Eng Fract Mech,1985年,22卷,673页
  • 5Zhao L G,Int J Eng Sci,1997年,35卷,387页
  • 6Wang X M,Int J Solids Struct,1996年,33卷,865页
  • 7陈宜亨,Eng Fract Mech,1995年,50卷,249页
  • 8George T. SHA,J. K. Chen.Weight functions for bimaterial interface cracks[J]. International Journal of Fracture . 1991 (4)
  • 9M. Stern,E. B. Becker,R. S. Dunham.A contour integral computation of mixed-mode stress intensity factors[J]. International Journal of Fracture . 1976 (3)
  • 10T. K. Hellen,W. S. Blackburn.The calculation of stress intensity factors for combined tensile and shear loading[J]. International Journal of Fracture . 1975 (4)

共引文献3

同被引文献42

  • 1孙环,贺利乐.焊接结构件疲劳裂纹扩展的数值研究[J].机械科学与技术,2015,34(6):840-843. 被引量:3
  • 2张敏,丁方,吕振林,周永欣.裂纹位置对焊接接头断裂参量的影响[J].机械科学与技术,2005,24(6):710-712. 被引量:3
  • 3郭树祥,许希武.任意多椭圆孔多裂纹无限大板的应力强度因子与M积分[J].固体力学学报,2006,27(1):6-14. 被引量:4
  • 4Eshelby J D. The elastic energy-momentum tensor [J]. J. Elasticity, 1975, 5:321-335.
  • 5Pak Y E, Herrmann G. Conservation laws and the material momentum tensor for the elastic dielectric [J]. International Journal of Engineering Science, 1986, 24(8):1365-1374.
  • 6McMeeking R M. A J-integral for the analysis of electrically induced mechanical stress at cracks in elastic dieleetrics [J]. International Journal of Engineering Science, 1990, 28(7) : 605- 613.
  • 7Dascalu C, Maugin G. Energy-release rates and path-independent integrals in electroelastic crack propagation [J].International Journal of Engineering Science, 1994, 32(5) :755- 765.
  • 8Suo C M. Fracture mechanics for piezoelectric ceramics [J]. Journal of the Mechanics and Physics of Solids, 1992, 40(4) :739-765.
  • 9Chen Y H. Advances in conservation laws and energy release rates [M]. The Netherlands: Kluwer Academic Publishers, 2002.
  • 10Rice J R. A path independent integral and the approximate analysis of strain concentration by notch and cracks [J]. J. Appl. Meeh., 1968, 35:379-386.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部