期刊文献+

基于自适应感知复位算法的移动机器人定位 被引量:10

A Robot Localization Method Based on Adaptive Sensor Resetting Algorithm
在线阅读 下载PDF
导出
摘要 本文在传统粒子滤波的基础上提出了一种基于自适应感知复位定位算法(ASRL:Adaptive Sensor Reset- ting Localization)的移动机器人定位方法.该方法通过带有权值的样本集描绘机器人的可信度,根据有效的样本数计算需要生成的新样本数,然后从感知分布中采样代替原来的样本.ASRL算法已经在安装有编码器和彩色摄像机两种传感器的实际移动机器人AMR-ITL上进行实验,结果表明该算法鲁棒性更好,收敛更快. An adaptive Sensor Resetting Localization(ASRL)algorithm based on traditional Particle Filter is proposed for mobile robot.The belief of robot is represented by a set of weighted samples,new necessary samples are calculated according to effective samples and resampled based on sensor data,and then old samples are replaced with new samples during ASRL algorithm. This algorithm is used on autonomous mobile robot AMR-ITL equipped with encoder and color camera sensor successfully,experiment result shows that ASRL is a more robust and quickly convergence algorithm.
出处 《电子学报》 EI CAS CSCD 北大核心 2007年第11期2166-2171,共6页 Acta Electronica Sinica
基金 中国民航大学人才启动基金(No.QD02X15)
关键词 移动机器人 定位 粒子滤波 自适应感知复位 mobile robot localization particle filter adaptive sensor resetting localization
作者简介 高庆吉 男,博士,教授,1966年生于黑龙江省桦川县,1988年本科毕业于武汉水利电力学院计算机及应用专业,1993年硕士毕业于东北电力学院控制理论与控制工程专业,2006年毕业于哈尔滨工业大学计算机应用技术专业.在国内外学术刊物发表学术论文30余篇.负责和参加完成国家863课题2项及横向科研多项课题,获部级科技进步奖1项.目前主要研究方向为移动机器人导航与协作.E-mail:gaoqingji@vip.sohu.com 雷亚莉 女,1982年出生于陕西省渭南市,2004年本科毕业于武汉理工大学自动化专业和计算机科学与技术专业,2007年4月硕士毕业于东北电力大学控制理论和控制工程专业.主要研究方向为机器人环境感知.E-mail:rohotlyl@163.com 胡丹丹 女,讲师,1979年生于吉林省柳河县,硕士.现在中国民航大学机器人研究所工作,主要研究方向为智能机器人环境感知认知.E-mail:hudandan_0@sohu.com 于咏生 男,1983年生于江苏省徐州市,现为中国民航大学计算机科学与技术学院硕士研究生,研究方向为机器人环境感知与导航.Email:yysbest@163.com
  • 相关文献

参考文献18

  • 1C F Olson.Probabilistic self-localization for mobile robots[ J]. IEEE Transactions on Robotics and Automation, 2000, 16( 1 ) : 55-66.
  • 2J Leonard, H Durrant-Whyte. Mobile robot localization by tracking geometric beacons[ J]. IEEE Transaction on Robotics and Automation, 1991,7(3) :376-382.
  • 3Patric Jensfelt, David Austin, Olle Wijk, Magnus Andersson. Feature based condensation for mobile robot localization[A]. In IEEE Intl Conf on Robotics and Automation[C]. San Francisco: CA, 2000.2531-2537.
  • 4W Burgard,D Fox,D Hennig, T Schmidt. Estimating the absolute position of a mobile robot using position probability grids [ A]. Proc 14^th National Conference on Artificial Intelligence [C]. Portland: AAA/Press, 1996.896-901.
  • 5S Thrun, D Fox, W Burgard, F Dellaert. Robust Monte Carlo localization for mobile robots[ J ]. Artificial Intelligence, 2000, 128(1-2):99-141.
  • 6A Doucet, N de Freitas, N Gordon, et al. Sequential Monte Carlo in Practice[ M ]. Springer Verlag, 2001.
  • 7J-S Gutmann, T Weigel, B Nebel. A fast, accurate, and robust method for serf-localization in polygonal environments using laser range finders [ J ]. Advanced Robotics Journal, 2001, 14 (8) :651-668.
  • 8S Lenser, MVeloso, Sensor resetting localization for poorly modelled mobile robots [ A ]. Int Conf on Robotics and Automation[C]. San Francisco: IEEE Press, 2000. 1225-1232.
  • 9D Fox,W Burgard, F Dellaert,S Thrun.Monte Carlo localization: Efficient position estimation for mobile robots[ A]. In Proc National Conference on Artificial Intelligence [ C ]. Orlando: MIT Press, 1999. 343-349.
  • 10D Fox, W Burgard, S Thrun. Markov localization for mobile robots in dynamic environments[J]. Journal of Artificial Intelligence Research, 1999,11 (1) : 391-427.

二级参考文献39

  • 1JENSFELT P, KRISTENSEN S. Active global localization for a mobile robot using multiple hypothesis tracking [ J].IEEE Trans Robotics Automation, 2001, 17(5) :748 - 760.
  • 2FOX D, BURGARD W, THRUN S. Active markov localization for mobile robots [J ]. Robotics and Autonomous Systems, 1998, 25 : 195 - 207.
  • 3DELLAERT F, FOX D, BURGARD W, et al. Monte Carlo localization for mobile robots [ J ]. IEEE ICRA,1999, 5 : 1322 - 1328.
  • 4FOX D, BURGARD W, THRUN S. Markov Localization for Mobile Robots in Dynamic Environments[J]. Journal of Artificial Intelligence Research,1999(11):391-427.
  • 5THRUN S,FOX D,BURGARD W,et al. Robust Monte Carlo localization for mobile robots [J]. Artificial Intelligence ,2001 ( 128 ) :99 - 141.
  • 6DELLAERT F,FOX D, BURGARD W,et al. Monte Carlo Localization for Mobile Robots [J]. IEEE ICRA, 1999(5) :1322 - 1328.
  • 7LEE D,CHUNG W,KIM M. A Reliable Position Estimation Method of the Service Robot by Map Matching[J].IEEE ICRA ,2003 (9): 2830 - 2835.
  • 8UEDA R, FUKASE T, KOBAYASHI Y, et al. Uniform Monte Carlo Localization--Fast and Robust Self-localization Method for Mobile Robots [J]. IEEE ICRA, 2002(5) :1353 - 1358.
  • 9Clark F O. Probabilistic self-localization for mobile robots[J]. IEEE Transactions on Robotics and Automation, 2000, 16(1) : 55 -66.
  • 10Ducker T, Nehmzow U. Mobile robot self-localisation using occupancy histograms and a mixture of Gaussian location hypotheses[J]. Robotics and Autonomous Systems, 1999, 34 (2/3) : 117 -129.

共引文献20

同被引文献123

引证文献10

二级引证文献111

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部