期刊文献+

剪切层流蒸发液膜的传热特性 被引量:5

Heat Transfer Characteristics of Evaporating Laminar Liquid Flow Films with Interfacial Shear
在线阅读 下载PDF
导出
摘要 为克服理论分析中气液界面对流换热难以计算的问题,基于气相传热模型,建立了在同向或反向切应力作用下层流饱和蒸发液膜的传热模型,推导出无量纲液膜厚度和壁面对流换热系数与流动长度、界面切应力和初始雷诺数间的理论关系式。研究表明,受液膜蒸发的影响,液膜厚度沿流动长度不断减小,换热传热系数不断增加;同向切应力具有减薄液膜厚度和增大传热系数的作用;反向切应力则具有相反的作用,其影响更为明显。这一理论模型可以反映层流饱和蒸发液膜的传热特性。 In order to overcome the difficult problem, of accurately calculating convective heat transfer along liquid-vapor interfaces, in theoretical analysis work, a heat transfer model, based on the vapor-phase heat transfer model, has been formulated for saturated evaporating liquid laminar flow films acted upon by co-current or counter-current interfacial shear. The theoretical relationship formula between the non-dimensional film thickness, including the wall' s heat transfer coefficient, and the flow distance, the interfacial shear and the initial Reynolds number, has been derived. Study results indicate that, under the effect of film evaporation, the film thickness continuously decreases and the heat transfer coefficient continuously increases along the flow path. On the other hand, co-current shear stress causes the film to get thinner and the heat transfer coefficient to increase, while counter-current shear stress exerts a reverse effect. The theoretical model can perfectly reflect the heat transfer characteristics of saturated evaporating laminar liquid flow films.
出处 《动力工程》 CSCD 北大核心 2007年第6期927-930,共4页 Power Engineering
基金 高等学校博士学科点专项科研基金资助项目(20040079004)
关键词 工程热物理 饱和蒸发 层流 切应力 液膜传热 气相传热 engineering thermophysics saturated evaporating laminar flow shearing stress liquid film heat transfer vapor-phase heat transfer
作者简介 叶学民(1973-),男,河北邢台人,博士,副教授。主要从事传热传质技术和洁净煤发电技术的研究。
  • 相关文献

参考文献9

  • 1Rose J W. Condensation heat transfer fundamentals [J]. Trans. Inst. Chem. Eng. ,Part A,1998(76):143-152.
  • 2Mosaad M. Combined free and forced convection laminar film condensation on an inclined circular tube with isothermal surface [J]. Int. J. Heat Mass Transfer, 1999,42(21 ) :4017-4025.
  • 3Mitrovic J. Effects of vapor superheat and condensate subcooling on laminar film condensation [J]. Trans. ASME, J. Heat Transfer, 2000 (122) : 192-196.
  • 4Ye Xuemin, Yan Weiping, Jiang, Zhangyan, et al. Hydrodynamics of free-falling turbulent wavy films and implications for enhanced heat transfer [J]. Heat Transfer Engineering ,2002,23( 1 ) :48-60.
  • 5叶学民,李春曦,阎维平.薄液膜二维表面驻波的流动稳定性研究[J].热能动力工程,2004,19(6):589-592. 被引量:6
  • 6Ye Xuemin, Yan Weiping. Linear temporal and spatial stability formulations of two-dimensional surface waves on evaporating, isothermal, or condensing liquid films [J]. Heat Transfer- Asian Research, 2005,34 (4) : 243-257.
  • 7Yih S M, LiuJ L. Prediction of heat and mass transfer in turbulent falling liquid film with or without interfacial shear [J] .J. AIChE, 1983,29(6) :903-909.
  • 8Ambrosini W, Manfredini A, Mariotti F, et al. Heat transfer from a plate cooled by a water film with countercurrent air flow [ J ]. J. Nuclear Technology, 1995,112 : 227-237.
  • 9Mills A F. Basic heat and mass transfer [ M]. Upper Saddler River, N. J. , Prentice Hall, 1999.

二级参考文献7

  • 1BENJAMIN G B. Wave formation in laminar flow down an inclined plane[J]. J Fluid Mech, 1957, 2:554-574.
  • 2YIH C S. Stability of liquid flow down an inclined plane[J]. Phys Fluids, 1963, 6(3):321-335.
  • 3ALEKSEENKO S V, NAKORYAKOV V E, POKUSAEV B G. Wave formation on vertical falling liquid films[J]. Int J Multiphase Flow, 1985,11(5): 607-627.
  • 4BRAUNER N, MARON D M, ZIJL W. Interfacial collocation equations of thin liquid film: stability analysis[J]. Chem Engng Sci, 1987, 42(8):2025-2035.
  • 5JOO S W, DAVIS S H, BANKOFF S G. Long-wave instabilities of heated films: two-dimensional theory of uniform layers[J]. J Fluid Mech, 1991, 230: 117-146.
  • 6BOHN M S, DAVIS S H. Thermocapillary breakdown of falling liquid films at high reynolds numbers[J]. Int J Heat Mass Transfer, 1993, 36(7):1875-1881.
  • 7YU L, WASDEN F, DUKLER A E, et al. Non-linear evolution of waves on falling films at high Reynolds numbers[J]. Phys Fluids, 1995, 7(8):1886-1902.

共引文献5

同被引文献49

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部