期刊文献+

切应力下液膜线性稳定性分析 被引量:1

Linear Stability Analysis of Liquid Films under Shear Stress
在线阅读 下载PDF
导出
摘要 沿倾斜壁面下降的薄液膜表面受气流剪切力的影响产生波动,液膜表面的波动特性和力平衡关系基于液膜表面的力平衡方程和边界条件,建立了在切应力作用下表征沿倾斜壁面下降液膜流动特性的O-S方程。结合切应力作用下液膜的流动状态,分析了表面波扰动在初发时刻的不稳定性,并着重描述引发不稳定性的各种物理原因。研究表明:表面张力和重力的横向分量为稳定性因素,重力的纵向分量为不稳定性因素。切应力对表面波的稳定性作用与气流方向和液膜的流动状态相关。 Waves that occur at the interface of a thin liquid fill draining down an inclined wall sheared by turbulent gas streams will determine the character/stic nature and stability of the flow because of the high degree of gas shear and force balance on the interface. Based on the force balance on the interface and boundary conditions, the 0rrSommerfeld equation is established under the shear stress for a falling liquid fill draining down an inclined wall. The effects of shear stress, Reynolds number, wave number on the fluid film stability are analyzed. The research shows that the shear stress is one of fluid fill dissemination unstable factors. The critical Reynolds number decreases with countercurrent shear stress and increases with cocurrent shear stress. Results show that the shear direction has an important influence of wave number and the other factors on flow stability.
出处 《电力科学与工程》 2007年第1期41-44,共4页 Electric Power Science and Engineering
基金 高等学校博士学科点专向科研基金项目(20040079004)
关键词 液膜 流动稳定性 气流切应力 liquid fills flow stability shear stress
作者简介 王松岭(1954-),男,华北电力大学电站设备状态监测与控制教育部重点实验室教授,博士生导师
  • 相关文献

参考文献10

  • 1Kapitza P L.Wave flow of thin layers of a viscous fluid layers[J].Zh.Eksp.Teor.Fiz.1964,18 (1):3-28.
  • 2Pierson F W,Whitaker S.Some theoretical and experimental observation of wave structure of falling liquid films[J].Ind.Eng.Chem.Fundam,1977,16:401-408.
  • 3Alekseenko S V,Nakoryakov V E.Instability of a liquid film moving under the effect of gravity and gas flow[J].Int.J.Heat Mass Transfer,1995,38 (11):2127-2134.
  • 4Alekseenko S V,Nakoryakov V E,Pokusaev B G.Wave formation on vertical falling liquid films[J].Int.J.MultiphaseFlow,1985,11 (5):607-627.
  • 5Trifinov Y Y.Wave formation on a film flowing down inclined plane with account for phase transition and shear stress on the interface[J].J.Applied Mechanics & Technical Physics,1996,37 (2):109-119.
  • 6Ye X M,Yan W P.Linear temporal and spatial stability formulations of two-dimensional surface waves on evaporating,isothermal,or condensing liquid films[J].Heat Transfer-Asian Research,2005,34 (4):243-257.
  • 7叶学民,阎维平.蒸发、等温或冷凝薄液膜二维表面波的通用时空稳定性方程[J].中国电机工程学报,2004,24(3):200-205. 被引量:22
  • 8叶学民,李春曦,阎维平.薄液膜二维表面驻波的流动稳定性研究[J].热能动力工程,2004,19(6):589-592. 被引量:6
  • 9张营,叶学民,王松岭,李春曦,张泰岩.剪切液膜线性化稳定方程[J].华北电力大学学报(自然科学版),2007,34(1):55-58. 被引量:5
  • 10Yih C S.Stability of liquid flow down an inclined plane[J].Phys.Fluids,1963,6 (3):321-335.

二级参考文献18

  • 1叶学民,李春曦,阎维平.薄液膜二维表面驻波的流动稳定性研究[J].热能动力工程,2004,19(6):589-592. 被引量:6
  • 2叶学民 阎维平(Ye Xuemin Yah Weiping).沿倾斜壁面下降的蒸发或冷凝降膜二维表面波的线性稳定性(Linear stability of the twodimensional waves of evaporating/condensing film draining down an inclined plate) [J].西安交通大学学报,.
  • 3BENJAMIN G B. Wave formation in laminar flow down an inclined plane[J]. J Fluid Mech, 1957, 2:554-574.
  • 4YIH C S. Stability of liquid flow down an inclined plane[J]. Phys Fluids, 1963, 6(3):321-335.
  • 5ALEKSEENKO S V, NAKORYAKOV V E, POKUSAEV B G. Wave formation on vertical falling liquid films[J]. Int J Multiphase Flow, 1985,11(5): 607-627.
  • 6BRAUNER N, MARON D M, ZIJL W. Interfacial collocation equations of thin liquid film: stability analysis[J]. Chem Engng Sci, 1987, 42(8):2025-2035.
  • 7JOO S W, DAVIS S H, BANKOFF S G. Long-wave instabilities of heated films: two-dimensional theory of uniform layers[J]. J Fluid Mech, 1991, 230: 117-146.
  • 8BOHN M S, DAVIS S H. Thermocapillary breakdown of falling liquid films at high reynolds numbers[J]. Int J Heat Mass Transfer, 1993, 36(7):1875-1881.
  • 9YU L, WASDEN F, DUKLER A E, et al. Non-linear evolution of waves on falling films at high Reynolds numbers[J]. Phys Fluids, 1995, 7(8):1886-1902.
  • 10Yih C S. Stability of liquid flow down an inclined plane [J]. Phys. Fluids, 1963,6: 321-335.

共引文献24

同被引文献9

  • 1Krantz W. B, and Goren S. L. Stability of thin liquid films flowing down a plane. Ind. Eng. Chem. Fundam. 1971, (10) :91 - 101.
  • 2Krylov V. S., Vorotilin V. P. and Levich V. G. To the theory of wave flow of thin liquid films. Teor. Osnovy Khim. Tekhnol, 1969, (3) :499.
  • 3Benjamin, T. B. Wave formulation in laminar flow down an inclined plane. J. Fluid. M ech, 1957, (2) :554 - 574.
  • 4Yih, C. S. Stability of liquid flow down an inclined plane, Phys. Fluid, 1963, (6) :321 - 334.
  • 5Yih C S. Stability of Parallel laminar flow with a free surface. Proc 2nd U S National Congress of Applied Mechanics, ASME New York, 1955 : 623 - 628.
  • 6Arghya Samanta. Stability of inertialess liquid film flowing down a heated inclined plane. Physicsand Applied Mathematics Unit, Indian Statistical Institute,2008.
  • 7Arghya Samanta. Stability of liquid film falling down a vertical non-uniformly heated wall. Physicsand Applied Mathematics Unit, Indian Statistical Institute,2008.
  • 8A. Oron, O. Gottlieb. Subcritical and supercritical bifurcations of the first and second-order Benney equations, J. Eng. Math,50(2004) : 121 - 140.
  • 9Yih, C. S., Stability of liquid flow down an inclined plane. Phys. Fluid, 1963, (6) :321 - 334.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部