期刊文献+

基于噪声独立分量分析的多用户检测

Multi-User Detection Based on Noise Independent Component Analysis
在线阅读 下载PDF
导出
摘要 针对独立分量分析算法忽略噪声这一缺点,引入基于噪声模型的噪声独立分量分析,得到基于噪声独立分量分析的多用户检测方法.并与基于无噪模型的算法进行仿真比较,结果表明本文引入的方法性能更优,稳健性更好,对实际信道的适应性更强. In order to remove the bias, a noise ICA algorithm based the noise model is introduced and the multi-user detection method based this algorithm is deduced. The algorithms are simulated to compare the performance of the two kinds of multl-user detection methods which are based the normal ICA algorithm and the noise ICA algorithm. Simulation results indicate that noise ICA algorithm method has better performance.
出处 《汕头大学学报(自然科学版)》 2007年第4期14-18,共5页 Journal of Shantou University:Natural Science Edition
关键词 噪声独立分量分析 快速定点ICA算法 多用户检测 noise ICA fast ICA algorithm multi-user detection
作者简介 程莹(1982-),女,教师,硕士.E-mail:chying0559@163.com
  • 相关文献

参考文献6

  • 1Gupta M, Santhanam B. Prior ICA based blind muhiuser detection in DS-CDMA systems. Signals, Systems and Computers[J]. IEEE, 2004(2): 2155-2159.
  • 2Hyv arinen A, Karhunen J, Oja E. Independent component analysis[M]. New York: John Wiley & Sons, Inc., 2001.
  • 3Joutsensalo J, Ristaniemi T. Learning algorithms for blind multiuser detection in CDMA downlink [J]. IEEE, 1998(3): 1040-1044.
  • 4Ristaniemi T, Joutsensalo J. Independent component analysis with code information utilization in DS-CDMA signal separation[J]. IEEE, 1999(1A): 320-324.
  • 5Hyvarinen A, Oja E. Independent component analysis: algorithms and applications[J]. Neural Net work, 2000, 13(4): 411-430.
  • 6Ekiei O, Yongacoglu A. Application of noisy-independent component analysis for CDMA signal separation[J]. IEEE, 2004(5): 3812-3816.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部