期刊文献+

一类反应扩散方程组正平衡解的存在性与唯一性

Existence and Uniqueness of Positive Stationary Solutions for a Class of Reaction-Diffusion System
在线阅读 下载PDF
导出
摘要 利用锥映射不动点指数计算方法,结合极值原理、解耦方法得到了一类反应扩散方程组正平衡解的存在性和唯一性。分析过程表明,对此类微分方程组的解耦方法类似于代数方程中的消元法。 In this paper, we study the existence and uniqueness of positive stationary solutions for a class of reaction-diffusion system by means of calculating the indices of fixed points of compact maps in cones,the maximum principles and the decoupling method. The process indicates that the decoupling method for the class of differential equations is similar to the elimination of unknowns in algebra.
作者 蒋飞达 李刚
出处 《南京气象学院学报》 CSCD 北大核心 2007年第5期687-693,共7页 Journal of Nanjing Institute of Meteorology
基金 国家自然科学基金资助项目(40475028)
关键词 反应扩散方程组 锥映射 不动点指数 平衡解 reaction-diffusion equations mapping in cone fixed point index stationary solution
作者简介 蒋飞达(1982-),男,江苏无锡人,硕士,研究方向:偏微分方程及其应用,jfd2004y@nuist.edu.cn; 李刚(通信作者),男,教授,ligang@nuist.edu.cn.
  • 相关文献

参考文献14

  • 1Rothe F, Global existence of branches of stationary solutions for a system of reaction diffusion equations from biology [ J ], Nonlinear Analysis, TMA,1981,5(5 ) :487-498.
  • 2Lazer A C, Mckenna P J. On steady state solutions of a system of reaction-diffusion equations from biology [ J ]. Nonlinear Analysis, TMA, 1982, 6(6) :523-530.
  • 3De Figueiredo D G, Mitidieri E. A maximum principle for an elliptic system and applications to semilinear problems [ J ]. SIAM J Math Anal, 1986,17 (4) :836-849.
  • 4Amann H. Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces [ J ]. SIAM Review, 1976,18 (4) :620-709.
  • 5Dancer E N. On the indices of fixed points of mapping in cones and applications [ J ], J Math Anal Appl, 1983,91 (1) :131-151.
  • 6Dancer E N, On positive solutions of some pairs of differential equations[ J]. Trans Amer Math Soc,1984(2) ,284:729-743.
  • 7王明新.生物学中一个反应扩散方程组正平衡解的存在唯一性[J].科学通报,1994,39(3):197-200. 被引量:5
  • 8谢强军,吴建华,黑力军.一类反应扩散方程非负平衡解的存在性[J].数学学报(中文版),2004,47(3):467-478. 被引量:10
  • 9查淑玲,李艳玲.杨秀香.一类反应扩散方程组?昆合问题正解的存在性[J].西北大学学报:自然科学网络版,2005,3(8):1-6.
  • 10徐晶晶,周伟灿,官元红.非共振二阶椭圆型方程解的存在唯一性[J].南京气象学院学报,2005,28(1):72-77. 被引量:2

二级参考文献54

  • 1WUGUANGRONG,HUANGWENHUA,SHENZUHE.ON A MIN-MAX THEOREM[J].Applied Mathematics(A Journal of Chinese Universities),1997,12(3):293-298. 被引量:1
  • 2Brown K J,Lin S S.Periodically perturbed conservative systems and a global inverse function theorem[J].Nonlinear Analysis,1980,4(1): 193-201.
  • 3Radulescu Marius,Radulescu Sorin.Global inversion theorems and applications to differential equations[J].Nonlinear Analysis,1980,4(4): 951-965.
  • 4Shen Zuhe.On the periodic solution to the Newtonian equation of motion[J].Nonlinear Analysis,1989,13(2): 145-150.
  • 5Lazer A C,Landesman E M,Meyers D R.On saddle point problems in the calculus of variations,the ritz algorithm,and monotone convergence[J].J Math Anal Appl,1975,52(2): 594-614.
  • 6Manasevich R F.A non-variational version of a max-min principle [J].Nonlinear Analysis,1983,7(6): 565-570.
  • 7Bates P W,Castro A.Existence and uniqueness for a variational hyperbolic system without resonance[J].Nonlinear Analysis,1980,4(6):1151-1156.
  • 8Ahmad S.An existence theorem for periodically perturbed conservative systems[J].Mich Math JCU,1973,20: 385-392.
  • 9Lazer A C.Application of a lemma on bilinear forms to a problem in nonlinear oscillations[J].Proc Amer Math Soc,1972,33(1): 89-94.
  • 10王明新,北京大学学报,1992年,28卷,1期,36页

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部