期刊文献+

基于混合核函数的支持向量机的图像边缘检测方法 被引量:1

SVM-based image edge detection method with mixture kernels
在线阅读 下载PDF
导出
摘要 研究了基于混合核函数的最小二乘支持向量机(LS-SVM)的图像边缘检测技术,利用LS-SVM对图像像素邻域的灰度值进行了曲面拟合,通过混合核函数推导出了图像的梯度算子和零交叉算子,并结合梯度算子和零交叉算子实现了图像边缘定位。 A novel edge detection method based on the combination result of gradient and zero crossings is presented, the image intensity of neighborhood region of pixel is well estimated by Least Squares Support Vector Machines(LS-SVM) with mixtures of kernels ,the gradient operator and zero crossing opertator are obtained by LS-SVM based on mixtures kernel function.
作者 薛亮 赖惠成
出处 《电子技术应用》 北大核心 2007年第10期72-74,122,共4页 Application of Electronic Technique
基金 教育部新世纪优秀人才支持计划项目(批准号:NCET-05-0897) 新疆维吾尔自治区高校科学研究计划项目(批准号:XJEDU2004E02 XJEDU2006110)
关键词 边缘检测 最小二乘支持向量机 混合核函数 边缘检测性能 edge detection least squares support vector machines mixtures of kernels edge detection performance
  • 相关文献

参考文献10

  • 1CANNY J.A computational approach to edge dection[J]. IEEE Tran on Pattern Analysis and Machine Intelligence, 1986,6(6) : 679-698.
  • 2RISHI R R,CHAUDHURI P.Thresholding in edge detection:a statiscal approach[J].IEEE Tran on Image Processing, 2004,13(7) : 927-936.
  • 3修保新,吴孟达.图像模糊信息粒的适应性度量及其在边缘检测中的应用[J].电子学报,2004,32(2):274-277. 被引量:10
  • 4VANDEWEIJER J, GEVERS T.Edge and corner detection by photometric quasi-invariants[J].IEEE Tran on Pattern Analysis and Machine Intelligence, 2005,27 (4) : 625-630.
  • 5VAPNIK V.An overview of statistical learning theory[J]. IEEE Trans on Neural Networks, 1999,10(5):988-999.
  • 6SUYKENS J A K, VANDEWALLE J.Least squares support vector machine classitiers[J].Neural Processing Letters, 1999,9(3) : 293-300.
  • 7SMITS G F, JORDAAN E M.Improved SVMRegression using Mixtures of Kemels[C].Proceedings of the 2002 International Joint Conference on Neural Networks.Hawaii: IEEE, 2002.2785-2790.
  • 8刘涵,郭勇,郑岗,刘丁.基于最小二乘支持向量机的图像边缘检测研究[J].电子学报,2006,34(7):1275-1279. 被引量:17
  • 9Sheng H.An SVM-based Small Target Segmentationand Clustering Approach[C].Proceedings of the Third International Conference on Machine Learning and Cybernetics. Shanghai : IEEE, 2004 : 3318-3323.
  • 10ABDOU I E,PRArlT W K.Quantitative design and evaluation of enhancement thresholding edge detectors[J]. Proc IEEE, 1979,67(5) : 753-763.

二级参考文献17

  • 1[1]L A Zadeh.Fuzzy sets and information granularity [A].Advances in Fuzzy Set Theory and Applications(M.Gupta,R.Ragade,and R.R.Yager,Eds.)[C].North-Holland,Amsterdam,1979:3-18.
  • 2[2]L A Zadeh.Fuzzy graphs,rough sets and information granularity [A].Proc.Third Int.Workshop on Rough Sets and Soft Computing [C].San Jose,1994.10-12.
  • 3[3]L A Zadeh.Fuzzy logic=computing with words [J].IEEE Trans.Fuzzy Syst.,1996,4(2):103-111.
  • 4[4]L A Zadeh.Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic [J].Fuzzy Sets Syst.,1997,90(2):111-117.
  • 5[5]W Pedrycz,M H Smith,A Bargiela.A granular signature of data [A].Int.Conf.NAFIPS-2000 [C].Atlanta,June 2000.69-73.
  • 6[6]K Hirota,W Pedrycz.Fuzzy relational compression [J].IEEE Trans.Syst.,Man,Cybern.,pt.B,June 1999,29(3):407-415.
  • 7[7]S K Pal,R A King.On edge detection of X-ray images using fuzzy sets [J].IEEE Trans.Patt.Anal.And Machine Intell.,1983,5(1):69-77.
  • 8[8]M Mizumoto.Pictorial representations of fuzzy connectives,PartⅠ:Cases of t-norms,t-conorms and averaging operators [J].Fuzzy Sets Syst.,1989,31(2):217-242.
  • 9Torre V,Poggio T A.On edge detection[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1986,8 (2):147-163.
  • 10Canny J.A computational approach to edge detection[J].IEEE Tran on Pattern Analysis and Machine Intelligence,1986,6(6):679-698.

共引文献24

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部