期刊文献+

支持向量机理论在植物根系图像边缘检测中的应用 被引量:1

Application of Support Vector Machine Theory to Image Edge Detection of Plant Roots
在线阅读 下载PDF
导出
摘要 由于传统边缘检测方法中存在的比如粗糙边缘、噪声边缘和不准确边缘等缺点,因此在植物根系的研究中,采用传统的图像边缘检测方法检测出来的边缘信息都无法达到令人满意的效果。本文基于带高斯径向基核函数的最小二乘支持向量机方法,得到了一簇梯度算子和零交叉算子,用来定位图像边缘,从而得到一种有效的图像边缘检测算法。用所得到的边缘检测算法与Sobel算法和Prewitt算法的性能进行了比较。仿真结果表明本文给出的算法与传统算法相比,不仅边缘检测性能得到提高,而且可以一定程度地克服噪声干扰。 Traditional image edge detection methods of plant roots exhibit some disadvantages, such as rough edge, marginal noise and inaccurate edge location. The edge detection of plant roots by the traditional image edge detection method can' t obtain satisfactory results. Based on the least squares support vector machine (SVM) with radially Gaussian kernel function, a set of new gradient operators and zero crossing operators are obtained. An efficient image edge detection algorithm, using the gradients to locate the edge position, is proposed to solve the above problems. The performance of the presented edge detection algorithm is compared with those of Canny and Prewitt detectors. Compared with the conventional detection methods, the detection performance of the proposed edge detection method is improved, and the noise interference, to a certain extent, can also be overcome.
作者 吴鹏 宋文龙
机构地区 东北林业大学
出处 《东北林业大学学报》 CAS CSCD 北大核心 2012年第8期153-156,共4页 Journal of Northeast Forestry University
基金 中央高校基本科研业务费专项资金(Z02068)
关键词 植物根系 边缘检测 最小二乘支持向量机 高斯径向基核函数 零交叉算子 Plant roots Edge detection Least squares support vector machines Radially Gaussian kernel function Zero crossing operators
作者简介 吴鹏,男,1980年7月生,东北林业大学机电工程学院,讲师。 通信作者:宋文龙,东北林业大学机电工程学院,教授。E-mail:wlsong139@126.com。
  • 相关文献

参考文献12

  • 1刘涵,郭勇,郑岗,刘丁.基于最小二乘支持向量机的图像边缘检测研究[J].电子学报,2006,34(7):1275-1279. 被引量:17
  • 2徐彤阳,姚跃华,朱志勇.一种基于支持向量机的图像边缘检测方法[J].微机发展,2005,15(1):87-90. 被引量:7
  • 3张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2289
  • 4KoNshl S, Yui]|e L A, Cough]an J M. A statistical approach to multi-scale edge detection [ J ]. Image Vision Comput, 2003,21 ( 1 ) :37-48.
  • 5王玉震,李雷.基于SVR的图像增强方法[J].计算机技术与发展,2009,19(1):60-62. 被引量:10
  • 6Eli P. Feature detection algorithm based on a visual system model [J]. Proceedings of the IEEE ,2002,90( 1 ) :78-94.
  • 7Suykens J A, Vandewale J. Least squares support vector machine classifiers [ J ]. Neural Porcessing Letter, 1999,9 ( 3 ) :293-300.
  • 8Mnreno G H, Bascon M S. Edge detection in noise images using the support vector machine[ M]. Heidelberg: Springer Verlag, 2001:685-692.
  • 9Rishi R, Chaudhuri P. Thresholding in edge detection : a statisti- cal approach [ J ]. 1EEE Tran on Image Processing,2004,13 ( 7 ) : 927 -936.
  • 10Vapnik V. An overview of statistical learning theory[ J]. IEEE Tran on Neural Networks, 1999,10 (5) :988-999.

二级参考文献29

  • 1刘光磊,侯德文.图像增强技术在指纹中的应用[J].信息技术与信息化,2006(3):124-125. 被引量:3
  • 2邓乃扬,田英杰.数据挖掘中的新方法--支持向量机[M].北京:科学出版社,2006.
  • 3Lin Yi. Support Vector Madaines and the Bayes Rule in Classification[ R]. Madson: University of Wisconsin, 1999.
  • 4Suykerns J A K, Vandewalle J. Least squares support vector machine classifiers[ J ]. Neural Processing Letters, 1999,9 ( 3 ) : 293 - 300.
  • 5Aazhang B,Paris B P,Orsak G C. Neural network for multiuser detcclion in code - division multiple access communicarioions [J]. IEEE Trans. Conmmn, 1992,40:1212 - 1222.
  • 6Kulm H, Tucker A. Nonliner programming[ C]//In Proceedings of the 2nd Berkdey System on Marhematieal Statistics and Pmbabilistics. US: University of California Press, 1951 :481-492.
  • 7章毓晋.图像工作[M].第2版.北京:清华大学出版社,2007.
  • 8边肇棋 张学工.模式识别(第2版)[M].北京:清华大学出版社,2000..
  • 9Vapnik V. The Nature of Statistical Learning Theory[M].New York: Springer- Verlag, 1995.5 - 13.
  • 10Btuges C. A tutorial on support vector machines for pattem recognition[J]. Data Mining and Knowledge Discovery, 1998,2(2) : 121 - 167.

共引文献2311

同被引文献38

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部