期刊文献+

有缺失数据两因素随机区组试验资料的最小二乘分析法及其应用 被引量:2

The Method of Least Squares for Analysing Data with Missing Values in Two-factor Experiment with Randomized Block Design and Its Application
在线阅读 下载PDF
导出
摘要 有缺失数据两因素随机区组试验资料是两因素水平组合重复数不等的非平衡资料。本文根据最小二乘原理提出分析这类资料的新方法。利用此法,可以估计出两因素的主效和互作效应,从而获得两因素各水平及其组合的最小二乘均数,并精确地进行方差分析与多重比较。最后,以一实例介绍该方法的应用。 The data with missing values in two-factor experiment with randomized block design is the unbalanced data with unequal replications of level combination of two factors. The method of least squares for analysing the kind of data was presented, first to estimate the main effects of the factors and their interactive effects, so as to get the least squares means (LSM) of them, and then to do analysis of variance and the difference significance test between LSMs of factor A, B and their level combinations. Finally, the application of the method was introduced by means of analysing a practical sample.
出处 《作物学报》 CAS CSCD 北大核心 1997年第4期432-439,共8页 Acta Agronomica Sinica
基金 国家自然科学基金资助项目
关键词 两因素随机区组 缺失数据 最小二乘法 Two-factor experiment with randomized block design Missing value The method of least squares Significance test
  • 相关文献

参考文献6

二级参考文献4

共引文献10

同被引文献17

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部