期刊文献+

带多乘积约束的线性规划问题的求解新方法 被引量:2

A New Method for Solution of Linear Programming With Additional Multiplicative Constraints
在线阅读 下载PDF
导出
摘要 根据问题的最优性和可行性提出一新的区域删除准则以排除问题(P)的可行域中不存在全局最优解的部分,结合区域删除准则和分支定界理论给出新算法.数值算例表明算法是有效可行的. New region-deleting principles are proposed based on the optimality and feasibility of the problem so as to delete the subregion without containing the optimal solutions of the problem (P). The new algorithm is proposed by combining the region-deleting principles with branch and bound theories. The numerical examples show the algorithm is feasible and effective.
出处 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第3期209-211,共3页 Journal of Henan Normal University(Natural Science Edition)
基金 国家自然科学基金(10671057) 国家社会科学基金(05XRK008) 河南省软科学研究计划(0513030920)
关键词 多乘积约束 区域删除准则 分支定界 multiplicative constraints region-deleting principles branch and bound
作者简介 申培萍(1964-),女,河南南阳人,河南师范大学教授,博士,研究方向:最优化理论及应用.
  • 相关文献

参考文献4

  • 1Ryoo H S,Sahinidis N V.Global optimization of multiplicative programs[J].Journal of Global Optimization,2003,26:387-418.
  • 2Benson H P,Boger G M.An outcome space cutting plane algorithm for linear multiplicative programming[J].Journal of Optimization Theory and Applications,2000,104:301-322.
  • 3Kuno T,Konno H,Irie A.A deterministic approach to linear programs with Several Additional Mutiplicative Constraints[J].Computational Optimization and applications,1999,14:347-366.
  • 4Benson H P.Decomposition branch-and-bound based algorithm for linear programs with addtional multiplicative constraints[J].Journal of Optimization Theory and Application,2005,126:41-61.

同被引文献11

  • 1申培萍,焦红伟.一类非线性比式和问题的全局优化算法[J].河南师范大学学报(自然科学版),2006,34(3):5-8. 被引量:3
  • 2Konno H, Kuno T. Linear muhiplicative programming[J]. Engineering Optimization, 1992,56 : 51 - 64.
  • 3Matsui T. NP-Hardness of linear multiplieative programming and related problems[J]. J of G O, 1996,9 : 113-119.
  • 4Gao Y L, Xu C X, Yang Y J. An outcome-space finitealgorithm for solving linear multiplicative programming[J]. Applied Mathematics and Computation, 2006,179 : 494-505.
  • 5Ryoo H S, Sahinidis N V. Global optimization ofmultiplicative programs[J]. Journal of Global Optimization,2003,26:387-418.
  • 6Benson H P, Boger G M. An outcome space, cutting planealgorithm for linear multiplicative programming[J]. Journal of Optimization Theory and Application, 2000,104:301-322.
  • 7Benson H P. An outcome space branch and bound-outer approximation algorithm for convexmuhiplicative programming[J]. Journal of Global Optimization, 1999,15 : 315-342.
  • 8Zhou X G, Wu K. A accelerating method for a class of muhiplicative programming withexponent[J]. Journal of Computational and Ap- plied Mathematics, 2009,223 : 975-982.
  • 9Benson H P, Boger G M. Multiplicative programming problems: analysis and efficient pointsearch heuristic[J]. Journal of Optimization Theory and Applications, 1997,94 (2) : 487-510.
  • 10Kuno T, Konno H, Irie A. A deterministic approach tolinear programs with several additional multiplicativeConstraints[J]. Computation- al Optimization and applications, 1999,14 : 347-366.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部