期刊文献+

一类多乘积规划问题的单纯形分支定界方法 被引量:1

Simplex branch and bound method of a class multi-product programming problem
在线阅读 下载PDF
导出
摘要 利用对数函数的性质将一类多乘积规划问题等价地转化为一个凹最小问题。针对这个问题的凹和特殊结构,利用单纯形上凹函数凸包络的线性性质,给出线性规划松弛问题以确定原问题最优值的下界,由此提出一类多乘积规划问题的单纯形分支定界算法,并且给出收敛性证明。数值例子表明所提出的算法是可行的和有效的。 A class of multi-product programming problems is equivalently converted into a concave minimum prob- lem by using the properties of logarithmic function. For the concave-sum special structures and with that property that the convex envelope of concave function is linear on simplex, a linear programming relaxation problem is given to determine the lower bound of the global optimal value of the original problem. Thereby, a simplex branch and bound method for solving a class of multi-product problems is proposed and the convergence proof of the proposed method is given. Numerical examples show that the proposed method is feasible and effective.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2011年第1期61-66,共6页 Journal of Natural Science of Heilongjiang University
基金 国家自然科学基金资助项目(60962006)
关键词 全局优化 凹乘积规划 分支定界方法 凸包络 global optimization concave multiplicative programming branch and bound method convex envelope
作者简介 作者简介:魏飞(1987-),女,硕士研究生,主要研究方向:最优化理论方法及应用 通讯作者:高岳林(1963-),男,教授,博士,E—mail:gaoyuelin@263.net
  • 相关文献

参考文献21

  • 1MARANAS C D, ANDROULAKIS I P, FLOUDAS C A, et al. Solving longterm financial planning problems via global optimization [ J ]. Journal of Economic Dynamics and Control, 1997,21 : 1405 - 1425.
  • 2KONNO H, WATANABE H. Bond portfolio optimization problems and their application to index tracking: a partial optimization approach [ J ]. Journal of Operations Research Society of Japan, 1996,39:285 - 306.
  • 3DORNEICH M C, SAHINIDIS N V. Global optimization algorithms for chip design and compaction[ J]. Engineering Optimization, 1995,25 (2) : 131 - 154.
  • 4BENSON H P. Vectory maximization with two objective functions[J]. Journal of Optimization Theory and Applications,1979,28:253 -257.
  • 5KUNO T. Globally determining a minimun-aera rectangle enclosing the projection of a higer dinmensional [ J]. Set, Operations Research Letters, 1993, 13:295 -303.
  • 6BENNETF K P, MANGASARIAN O L. Bilinear separation of two sets in n-space[ J]. Computational Optimization and Application, 1994 (2) :207 - 227.
  • 7SCHAIBLE S, SODINI C. Finite algorithm for generalized linear multplicative programming[ J]. Journal of Optimization Theory and Applications, 1995,87(2) :441 -455.
  • 8KUNO T, YAJIMA Y, KONNO H. An outer apprroximation method for minmizing the product of sereral convex functions on a convex set[ J]. Jour- nal of Global optimization, 1993,3 ( 3 ) : 325 - 335.
  • 9BENSON H P. Decomposition branch and bound based algorithm for linear programs with additional multiplicative constraints[ J]. Journal of Opti- mization Theory and Applications,2005,126 (1) :41 -46.
  • 10KUNO T. A finite branch and bound algorithm for generalized linear multplicative programming[ J]. Computational Optimization and Application, 2001,20 : 119 - 135.

二级参考文献27

  • 1高岳林,尚有林,张连生.解带有二次约束非凸二次规划问题的一个分枝缩减方法(英文)[J].运筹学学报,2005,9(2):9-20. 被引量:10
  • 2屈绍建,张可村.一类全局优化问题的线性化方法[J].应用数学,2006,19(2):282-288. 被引量:2
  • 3申培萍,焦红伟.一类非线性比式和问题的全局优化算法[J].河南师范大学学报(自然科学版),2006,34(3):5-8. 被引量:3
  • 4Konno H, Kuno T. Linear muhiplicative programming[J]. Engineering Optimization, 1992,56 : 51 - 64.
  • 5Matsui T. NP-Hardness of linear multiplieative programming and related problems[J]. J of G O, 1996,9 : 113-119.
  • 6SAHNI s,GONZALEZ T.P-complete approximation pwblems[J].Journal ofthe Association of Computing Machinery,1976,23:555-565.
  • 7LIU G S,ZHANG J Z.A new branch and bound algorithm for solving quadratic programs with linear complementarityk constraints[J].Journal of Computa-tional and Applied Mathematics,2002,146:77-87.
  • 8YE Y Y.Approximating global quadratic optimization with convex quadratic constraind[J].Journal of Global Optimization,1999,15:1-17.
  • 9BRIMBERG J,HANSEN P,MLADENOVIC N.A note on reduction of quadratic and Bn-inear programs with equality constraints[J].Journal of Global Optimization,2002,22:39-47
  • 10SHEN P P,ZHANG K C.Global optimization of signomial geometric programming using Linear relaxation[J].Applied Mathematic and Computation,2004,150:99-144.

共引文献26

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部