期刊文献+

非线性序集逻辑系统L4^2中命题真度值在[0,1]上的分布 被引量:10

Distribution of Propositional Truth Degree in 4-value Propositional Logic Systems Associated with a Nonlinear Ordering True Value Set
在线阅读 下载PDF
导出
摘要 利用势为4的均匀概率空间的无穷乘积在四值逻辑系统中引入公式的真度概念,给出了真度推理规则,证明了真值集为非线性序集四值逻辑系统L24中全体公式的真度值之集在[0,1]上是稠密的,为进一步建立四值非线性序集逻辑系统的近似推理理论奠定了基础. Using the infinite product of homogeneous probability space with potential of 3, a conception of formula truth degree is introduced into 4-valued logic system and a inferential rule of truth degree is also given. It is proved further that the set of complete formula truth degree in [ 0,1 ] is dense one in 4-value logic system associated with a nonlinear ordering true value set ; providing a basis for further establishing approximate reasoning theory of 4-valued propositional logic.
出处 《华北水利水电学院学报》 2007年第4期107-109,共3页 North China Institute of Water Conservancy and Hydroelectric Power
基金 河南省自然科学基金项目(0611052600) 华北水利水电学院青年科学基金项目(HSQJ2005002)
关键词 真度 真度推理规则 稠密 非线性序集 truth degree truth degree inferential rule dense nonlinear ordering set
作者简介 左卫兵(1976-),男,河南内黄人,华北水利水电学院讲师,主要从事应用数学与概率统计方面的研究.
  • 相关文献

参考文献5

二级参考文献28

  • 1郑亚林,李彩萍.赋值格为非线性序的一种4值逻辑系统G_4~2[J].宝鸡文理学院学报(自然科学版),1998,18(4):1-4. 被引量:3
  • 2Rosser J B,Turquette A R.Many-valued logics[M].Amsterdam:North-Holland,1952.
  • 3De Gas M.Knowledge representation in a fuzzy setting [M].Paris:Tech Rep 89/48 University Paris Vilaforia,1989.
  • 4Pavelka J.On fuzzy logic Ⅰ,Ⅱ,Ⅱ [J].Zeischr für Mathematik Logik u Grundlagen d Mathematik,1979,25(1):45~52;119~134;447~464.
  • 5王世强 孟小青.数理逻辑与范畴应用[M].北京:北京师范大学出版社,1999..
  • 6Halmos P R.Measure theory[M].New York:Spring-Verlag,1974.
  • 7Zadeh L A. Outline of a new approach to the analysis of complex systems and decision processes[J]. IEEE Trans. Systems, Man and Cybernet, 1973,1: 28 ~ 44.
  • 8Dubois D,Prade H. Fuzzy sets in approximate reasoning[J]. Fuzzy Sets and Systems,1991,40(1) :143~202.
  • 9Pavelka J. On fuzzy logic(Ⅰ,Ⅱ,Ⅲ)[J]. Zeitschr f Math Logic und Grundlaagen d Math,1979,25(1):45~52;119~ 134;447~464.
  • 10Ying M S. The fundamental theorem of ultraproduct in Pavelka's logic[J]. Z. Math. Logic Grundlagen Math. ,1992,38:197~201.

共引文献240

同被引文献47

引证文献10

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部