摘要
利用势为 3的均匀概率空间的无穷乘积在 L ukasiewicz三值命题逻辑中引入了公式的真度概念 ,证明了全体公式的真度值之集在 [0 ,1 ]上是稠密的 ,并给出真度的表达式 ;利用真度定义公式间的相似度 ,进而导出全体公式集上的一种伪距离 ,为三值命题的近似推理理论提供一种可能的框架。
Base on the infinite product of evenly distributed probability space, this paper introduced the theory of truth degrees in Lukasiewicz 3-valued propositional logic. It is proved that the set of (truth) degrees of Propositions is dense in [0,1], and expressions of truth degrees are obtained. (Moreover,) a pseudo-metric on the set of propositions is defined by means of the concept of truth (degrees) of propositions and a possible framework for approximate reasoning is proposed.
出处
《模糊系统与数学》
CSCD
2004年第4期39-45,共7页
Fuzzy Systems and Mathematics
基金
兰州理工大学优秀青年基金资助项目
关键词
真度
相似度
近似推理
Truth Degree
Similarity Degree
Approximate Reasoning