摘要
目的建立以超声特征诊断乳腺恶性病变的Logistic回归模型。方法对手术病理证实的475个乳腺病灶的二维超声、彩色多普勒超声、超声弹性成像特征进行多因素回归分析,建立Logistic模型。用ROC曲线法评价Logistic模型的预报能力。结果多因素回归分析显示最后进入Logistic模型的7个特征分别为:弹性成像评分(OR=5.735)、病灶边缘(OR=8.421)、病灶内微小钙化,(OR=8.755)、CDFI分级(OR=1.767)、内部回声不均匀(OR=0.276)、后方回声衰减(OR=3.282)、后方回声增强(OR=0.396)。Logistic模型的ROC曲线下面积为0.979。结论以超声特征诊断乳腺恶性病变的Logistic回归模型有助于鉴别乳腺良、恶性病变。
Objective To establish a logistic model for predicting breast malignancy on the basis of ultrasonographic features. Methods The features of gray-scale ultrasonography (US), color Doppler flow imaging (CDFI) and ultrasonic elastography (UE) were evaluated in 475 breast lesions confirmed by surgical pathology. A Logistic model for predicting breast malignancy on the basis of ultrasonographic features was obtained. A receiver operating characteristic (ROC) curve was used to assess the performance of the Logistic model. Results Seven ultrasonic features were finally entering the Logistic model, they were: elasticity score (odds ratio, OR= 5. 735), margin (OR= 8. 421), microcalcification (OR=8. 755), color Doppler flow grade (OR=1. 767) ,heterogeneous texture (OR=0. 276), shadowing (OR=3. 282), and enhanced transmission (OR =0. 396). The area under the ROC curve was 0. 979. Conclusion The Logistic model can help differentiate benign from malignant breast lesions.
出处
《中国医学影像技术》
CSCD
北大核心
2007年第1期88-90,共3页
Chinese Journal of Medical Imaging Technology
作者简介
沈建红(1971-),女,江苏人,硕士,主治医师(现在广州中医药大学附属第二医院工作).E-mail:xzyezi@yahoo.com.cn
[通讯作者]罗葆明,中山大学附属第二医院超声科,510120.E-mail:bmluo2005@126.com