期刊文献+

饱和多孔介质动力分析的数值流形单元 被引量:1

NUMERICAL MANIFOLD ELEMENT FOR DYNAMIC ANALYSIS OF SATURATED POROUS MEDIA
在线阅读 下载PDF
导出
摘要 基于数值流形方法中覆盖函数的基本思想,构造了适用于饱和多孔介质动力耦合分析的三节点平面流形单元,该单元满足Babuska-Brezzi稳定性准则与Zienkiewicz-Taylor分片试验条件,对于位移和孔隙压力具有不等阶的插值函数,且所有节点上具有相同自由度。用标准Galerkin法和Newmark法将饱和多孔介质动力基本方程在空间和时间上离散,得到饱和多孔介质动力分析的流形元离散的算法公式。数值结果表明,与传统有限元相比在孔隙流体不可压缩且非渗流的条件下,数值流形单元对于压力场的计算具有良好的数值稳定性。 A three nodal plane manifold element is developed based on the technique of cover function of numerical manifold method (NMM) for dynamic analysis of saturated porous media. The advantages of the manifold element developed are that it satisfies the so-called Babuska-Brezzi stability criterion and Zienkiewicz-Taylor patch test. The interpolation of displacement and pressure can be determined independently. All nodes of the manifold element have uniform degrees of freedom. The standard Galerkin method and Newmark scheme are used in the spatial and temporal discretization of the governing equations. Compared with the widely used traditional finite element method (FEM), the manifold element method (MEM) presents good stability for the coupling problems, particularly in the nearly incompressible pore fluid and undrained conditions.
作者 周雷 张洪武
出处 《工程力学》 EI CSCD 北大核心 2006年第9期167-172,共6页 Engineering Mechanics
基金 国家自然科学基金与创新群体基金(10225212 10421002) 长江学者和创新团队发展计划 国家基础性发展规划项目(2005CB321704)
关键词 饱和多孔介质 数值流形方法 稳定性准则 覆盖函数 流固耦合 saturated porous media numerical manifold method stability criterion cover function fluid-solid coupling
作者简介 周雷(1978),男,浙江嘉兴人,博士生,从事计算岩土力学研究; 张洪武(1964),男,辽宁大连人,教授,博士,博导,主要从事计算力学研究(E-mail:zhanghw@dlut.edu.cn)。
  • 相关文献

参考文献19

二级参考文献50

  • 1杨晓翔,范家齐,匡震邦.求解混合型裂纹应力强度因子的围线积分法[J].计算结构力学及其应用,1996,13(1):84-89. 被引量:23
  • 2周维垣,杨若琼,剡公瑞.流形元法及其在工程中的应用[J].岩石力学与工程学报,1996,15(3):211-218. 被引量:38
  • 3石根华 裴觉民(译).数值流形方法与非连续变形分析[M].北京:清华大学出版社,1997..
  • 4[1]Biot M A. General theory of three-dimensional consolidation. J Appl Phys, 1941, 12: 155-164
  • 5[2]Biot M A. Theory of propagation of elastic waves in fluid saturated porous solid. J Acoust Soc America, 1956, 28: 168-191
  • 6[3]Zienkiewicz O C, Chan A H C, Pastor M, Paul D K, Shiomi T. Static and dynamic behaviour of soils: a rational approach to quantitative solutions. Ⅰ-Fully Saturated Problems, Proc Royal Soc London, 1990, A 429:285-309
  • 7[4]Ehlers W, Volk W. On shear band localisation phenomena of fluid-saturated granular elasto-plastic porous solid materials accounting for fluid viscosity and micropolar solid rotation. Mechanics of Cohesive-Frictional Materials Structures, 1997, 2(4) :301-302
  • 8[5]Zienkiewicz O C, Xie Y M, Schrefler B A, Ledesma A, Bicanic N. Static and dynamic behaviour of soils: a rational approach to quantitative solutions, part Ⅱ: semi-saturated problems. Proc R Soc London, 1990, A429:311-321
  • 9[6]Li X, Zienkiewicz O C, Xie Y M. A numerical model for immiscible two-phase fluid flow in a porous medium and its time domain solution. Int J Numeri Meths Engng, 1990, 30:1195-1212
  • 10[7]Schrefler B A, Simoni L, Li X, Zienkiewicz O C. Mechnics of partially saturated porous media. In Desai C S and Gioda G(eds), Numerical Methods and Constitutive Modeling in Geomechanicsm Spring-Verlag, Wien, 1990, 169-209

共引文献276

同被引文献59

引证文献1

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部