期刊文献+

热传导问题的非协调数值流形方法 被引量:8

Incompatible Numerical Manifold Method Based on Heat Exchange Problem
在线阅读 下载PDF
导出
摘要 数值流形方法通过引入数学与物理双重网格,将插值域与积分域分别定义在两个不同的覆盖上,其优点是网格划分随意,不受复杂边界形状和材料界面的限制,是较之于有限元方法更一般化的数值模拟方法。在计算精度方面,数值流形方法远远高于有限元法,但它的精度还是不够理想。为此本文在单元总体位移场上附加非协调位移基本项,使单元位移函数趋于完全,构造了非协调流形单元来改善流形单元的计算精度和计算效率,并将其应用于热传导问题,推导了势问题的非协调数值流形方法。 Based on the double meshes of mathematics and physics in numerical manifold method, domains of interpolation and integration were defined on two different covers respectively. The merit of this method is arbitrary mesh discretization, and no constraints of complex geometrical shape and material interface, and the method is more general compared wirh conventional finite element method. But its computing accuracy is no perfect, so the incompatible displacement term is added in total element displacement function, it makes the displacement function tend to entire, and establishes an incompatible manifold element to improve computing efficiency. The method is applied to heat exchange problem, and the incompatible numerical manifold method based on potential problem was presented.
作者 魏高峰 冯伟
出处 《力学季刊》 CSCD 北大核心 2005年第3期451-454,共4页 Chinese Quarterly of Mechanics
关键词 非协调元 数值流形方法 热传导 有限覆盖技术 位移基本项 incompatible element numerical manifold method heat exchange finite coved technique displacement term
作者简介 魏高峰(1968-),男,山西长治人,博士研究生,副教授.研究方向:固体力学.
  • 相关文献

参考文献5

  • 1张春生,龙驭球,须寅.三维内参型附加非协调位移基本项[J].工程力学,2001,18(5):50-63. 被引量:8
  • 2石根华著 裴觉民译.数值流形方法与非连续变形分析[M].北京:清华大学出版社,1997..
  • 3Li S, Cheng Y, Wu Y F. Numerical manifold method based on the method of weighted residuals[J]. Comput Mech, 2005 (35):470 - 480.
  • 4Wilson E L, Taylor R L, Doherty W P, Ghaboussi J. Incompatible displacement models [C]. Numerical and Computer Methods in Structural Mechanics, Academic Press, 1973.
  • 5Taylor R L, Beresford P J, Wilson E L. A incompatible element for stress analysis[J]. Int J Num Mech Eng, 1976, 10:1211 - 1219.

二级参考文献17

共引文献13

同被引文献177

引证文献8

二级引证文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部