摘要
用算子半群的Trotter-Kato逼近定理研究参数连续Markov链中转移函数的逼近.给出了Feller-Reuter-Riley转移函数收敛的q矩阵条件,并证明了Feller-Reuter-Riley转移函数的收敛和它们对应的预解函数的收敛等价.
The author has studied the approximation of transition functions using Trotter-Kato theorems and a condition on q-matrices in order that their corresponding Feller-Reuter-Riley transition functions converge is obtained. The author also shows that the convergence of a sequence of Feller-Reuter-Riley transition functions is equivalent to the convergence of their corresponding resolvent functions.
出处
《西南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2006年第4期25-28,共4页
Journal of Southwest China Normal University(Natural Science Edition)
关键词
参数连续MARKOV链
压缩半群
转移函数
Q-矩阵
逼近
continuous-time Markov chains
contraction semigroup
transition function
q-matrix
approximation
作者简介
赵文强(1969-),男,四川南江人,讲师,硕士,主要从事泛函分析及其应用的研究.