摘要
For injective, bounded operator C on a Banach space X , the author defines the C -dissipative operator, and then gives Lumer-Phillips characterizations of the generators of quasi-contractive C -semigroups, where a C -semigroup T(·) is quasi-contractive if ‖T(t)x‖‖Cx‖ for all t0 and x∈X . This kind of generators guarantee that the associate abstract Cauchy problem u′(t,x)=Au(t,x) has a unique nonincreasing solution when the initial data is in C(D(A)) (here D(A) is the domain of A ). Also, the generators of quasi isometric C -semigroups are characterized.
For injective, bounded operator C on a Banach space X , the author defines the C -dissipative operator, and then gives Lumer-Phillips characterizations of the generators of quasi-contractive C -semigroups, where a C -semigroup T(·) is quasi-contractive if ‖T(t)x‖‖Cx‖ for all t0 and x∈X . This kind of generators guarantee that the associate abstract Cauchy problem u′(t,x)=Au(t,x) has a unique nonincreasing solution when the initial data is in C(D(A)) (here D(A) is the domain of A ). Also, the generators of quasi isometric C -semigroups are characterized.