期刊文献+

广义Fermat数中的孤立数 被引量:4

The Anti-sociable Numbers in Generalized Fermat Numbers
在线阅读 下载PDF
导出
摘要 设n是正整数,a是大于1的正整数,论文证明了广义Fermat数F(a,n)当n>max(8,loga/log 2)时都是孤立数. Let a , n be positive integers with a 〉1. Let F(a,n)=(a^2n +1)/b,where b is equal to 1 or 2 according as a is even or odd. In this paper we prove that if n〉max(8,log a/log2), then F(a,n)is an anti-sociable number.
作者 刘志伟
出处 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第2期133-134,共2页 Journal of Henan Normal University(Natural Science Edition)
基金 国家自然科学基金项目(10271104) 广东省自然科学基金项目(04011425)
关键词 广义FERMAT数 相亲数 孤立数 generalized Fermat number amicable number anti- sociable number
作者简介 刘志伟(1963-),男,广西贺州人,梧州师范高等专科学校副教授,主要从事数论研究.
  • 相关文献

参考文献5

  • 1Guy R K.Unsolved problems in number theory[M].New York:Springer Verlag,1981.
  • 2颜松远.2500年研究探寻相亲数(英文)[J].数学进展,2004,33(4):385-400. 被引量:24
  • 3Luca F.The anti-social Fermat numbers[J].Amer Math Monthly,2000,107:171-173.
  • 4华罗庚.数论导引[M].北京:科学出版社,1979..
  • 5Rosser J B,Schoenfeld L.Approximate formulas for some functions of prime numbers[J].lllinois J Math,1962,6:64-94.

二级参考文献28

  • 1Battiato S, BorhoW. Are there odd ami cable numbers not divisible by three [J]. Mathematics of Computation, 1988, 50: 633-637.
  • 2Battiato S, Borho W. Breeding amicable numbers in abundance Ⅱ [J].Mathematics of Computation,2000, 235(70): 1329-1333.
  • 3Borho W. On Tha bit ibn Kurrah's formula for amicable numbers [J]. Mathematics of Computation, 1972,118(26): 571-578.
  • 4Borho W. Some large primes and amicable numbers[J]. Mathematics of Computation, 1981, 118(36):303-304.
  • 5Borho W, Hoffmann H. Breeding amicable numbers in abundance [J]. Mathematics of Computation, 1986,173(46): 281-293.
  • 6Bratley P, Lunnon F, McKay J. Amicable numbers and their distribution [J]. Mathematics of Computation, 1970, 110(24): 431-432.
  • 7Dickson L E. Notes on the theory of numbers [J]. American Mathematical Monthly, 1911, 18: 109.
  • 8Garcia M. The first known type (7, 1) amicable pair [J]. Mathematics of Computation, 2003, 72(42):939-940.
  • 9Guy R K. Unsolved Problems in Number Theory [M]. 2nd Edition, Springer-Verlag, New York, 1994.
  • 10Krishnanurthy C. Some sets of amicable numbers of higher order [J]. Indian Journal of Pure and Applied Mathematics, 1980, 11(12): 1549-1553.

共引文献237

同被引文献33

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部