期刊文献+

基于径向基函数神经网络模型的砂土液化概率判别方法 被引量:50

Probabilistic estimation of sand liquefaction based on neural network model of radial basis function
在线阅读 下载PDF
导出
摘要 以国内外25次大地震中的344组场地液化实测资料为基础,通过径向基函数神经网络模型的训练和检验,分析了修正标准贯入击数N1与饱和砂土抗液化强度之间的非线性关系,建立了饱和砂土液化极限状态曲线或抗液化强度临界曲线经验公式。经统计分析,给出了液化和非液化的概率密度函数以及抗液化安全系数与液化概率之间的经验公式,最后导出了具有概率意义的饱和砂土抗液化强度经验公式。当液化概率水平为50%时,即等价于传统的确定性砂土液化判别,该方法预测液化和非液化的可靠性分别为90.4%和81.2%,具有较高的可靠性。本文提出的砂土液化概率判别方法,使工程场地的砂土液化概率判别如同确定性砂土液化判别一样简单、方便,从而使砂土液化概率判别方法用于工程实践和纳入有关规范成为可能。 Based on the 344 liquefaction data of the twenty-five strong earthquakes in the world, through training and testing the neural network model of Radial Basis Function (RBF), the nonlinear relation between corrected blow count N1 of standard penetration test and cyclic resistance ratio CRR of saturated sand was analyzed, and empirical equation CRRcri of liquefaction limit state curve or critical cyclic resistance ratio curve of saturated sand was also constructed. By statistic analysis, probability density functions of liquefaction and non-liquefaction cases as well as empirical equation between safety factor and liquefaction probability of saturated sands were given, then the empirical equation of cyclic resistance ratio CRR of saturated sands with different probability level was educed. When liquefaction probability level was equal to 50%, the present method was consistent to traditional deterministic method of sand liquefaction estimation, and its reliability for liquefaction and non-liquefaction estimation of saturated sands was 90.4% and 81.2%, respectively. The method made the sand liquefaction probabilistic estimation of engineering site as easy and convenient as traditional deterministic method of sand liquefaction estimation. So it was possible that the method of sand liquefaction probability estimation would be applied in the engineering practice and adopted in codes for seismic design.
出处 《岩土工程学报》 EI CAS CSCD 北大核心 2006年第3期301-305,共5页 Chinese Journal of Geotechnical Engineering
基金 国家教育部高等学校骨干教师资助项目(2001) 江苏省自然科学基金资助项目(BK2004124)
关键词 砂土液化 RBF神经网络 饱和砂土液化极限状态曲线 砂土液化概率判别方法 sand liquefaction RBF neural network saturated sand liquefaction limit state curve sand liquefaction probabilistic estimation method
作者简介 陈国兴(1963-),男,浙江新昌人,博士,教授,主要从事岩土工程及防灾减灾研究。
  • 相关文献

参考文献6

  • 1郭晶.Matlab6.5辅助神经网络分析与设计[M].北京:电子工业出版社,2003.1..
  • 2谢君斐.关于修改抗震规范砂土液化判别式的几点意见[J].地震工程与工程振动,1984,4(2):95-126.
  • 3唐山地震砂土液化联合研究小组.唐山地震砂土液化现场勘察资料研究报告[R].北京:北京市勘察处,1983,2.26-41.
  • 4YOUD T L,IDRISS I M,et al.Liquefaction resistance of soils:Summary report from the 1996 NCEER and 1998NCEER/NSF Workshops on evaluation of liquefaction resistance of soils[J].Journal of Geotechnical and Geoenvironmental Engineering,ASCE,2001,127(10):297 -313.
  • 5陈国兴,胡庆兴,刘雪珠.关于砂土液化判别的若干意见[J].地震工程与工程振动,2002,22(1):141-151. 被引量:57
  • 6JUANG C H,CHEN J,TAO J,ANDRUS,R D.Risk based liquefaction potential evaluation using standard penetration tests[J].Canada Geotechnique,2000,37(6):1195-1208.

二级参考文献4

共引文献80

同被引文献402

引证文献50

二级引证文献240

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部