期刊文献+

系数矩阵为块三对角的线性方程组的并行算法 被引量:7

An Improved Parallel Algorithm for Solving Linear Equations involving Block Tridiagonal Coefficient Matrix
在线阅读 下载PDF
导出
摘要 给出了一种求解系数矩阵为块三对角的线性方程组的适合于MIMD型机的并行算法。从理论上证明了他与BSOR方法有相同的收敛速度,且与块Jacobi方法有相同的并行性,并用一个算例在Multi-TransputerSystem模型机上作了计算,证明了他的有效性与可行性。 Yanis's 1990 paper [1] presents a parallel method for solving linear system of equations which involves block tridiagonal coefficient matrix. Ref.[1] approximates the level of methods used in P. R. China. But Yanis's method appears to be not sufficiently good in convergence. We now seek to improve convergence without sacrificing parallelism.Conversence is improved through suitable decomposition of matrix A in eq. (1), which represents a system of linear equations. After trying out several likely ways of decomposition, the best is that given by eq. (la). With this best way of decomposition and using the form of the iterative formula of the BSOR method, we establish the needed iterative formula, eq. (2). Then eqs. (3) through (5) are provided for carryins out computation required by our parallel algorithm. Our algorithm is suitable when multi - transputer system is employed as model machine.One illustrative example is given. The times consumed with our parallel algorithm and that of Ref. [1] are respectively 3.347 s and 4.187 s.These results indicate that our algorithm is effective and feasible.
机构地区 西北工业大学
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 1996年第2期314-318,共5页 Journal of Northwestern Polytechnical University
基金 国家教委博土点基金 航空科学基金
关键词 块三对角 系数矩阵 并行算法 线性方程组 block tridiagonal coefficient matrix, parallel algorithm, BSOR method, multitransputer system
  • 相关文献

参考文献2

  • 1李晓梅,并行计算与偏微分方程数值解,1990年
  • 2程云鹏,数值线性代数,1988年

同被引文献28

  • 1盛跃宾,宋晓秋,刘德贵.带状线性方程组的一种有效分布式并行算法[J].系统工程与电子技术,2004,26(7):967-969. 被引量:8
  • 2白中治.并行矩阵多分裂块松弛迭代算法[J].计算数学,1995,17(3):238-252. 被引量:21
  • 3Cui Xi-ning,Lti Quan-yi.A parallel algorithm for block-tridiagonal linear systems[J].Applied Mathematics and Computation,2006,173 : 1107-1104.
  • 4Varga R S.Matrix iterative[M].Englewood Cliffs, NJ:Prentice-Hall, 1962.
  • 5Cui Xining, Lu Quanyi. A parallel algorithm for block-tridiagonal linear systems[J]. Applied Mathematics and Computation, 2006,173 : 1107-1114.
  • 6Varga R S. Matrix Iterative Analysis[M]. Englewood Cliffs, N. J : Prentice-Hall, 1962.
  • 7Lv Quanyi, Xiao Manyu, Zhou Min. A parallel algorithm based on Galerkin theory for block-tridiagonal linear systems[J]. Applied Mathematics and Communication, 2007,187 (2) : 1277-1285.
  • 8Garey L E,Shaw R E. A parallel algorithm for solving Toeplitz linear systems[J]. Applied Mathematics and Communication, 1999,100(2) : 241-247.
  • 9[2]程云鹏. 数值线性代数. 西安:西北工业大学出版社, 1988
  • 10[3]Wen Li, Weiwei Sun, Comparison Results for Parallal Multisplitting Methods with Applications to AOR Methods, Linear Algebra and its Applications, 2001, 331(1-3): 131~144

引证文献7

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部