期刊文献+

信息融合技术在电力系统暂态稳定评估中的应用 被引量:3

Application of Information Fusion Technology in Power System Transient Stability Assessment
在线阅读 下载PDF
导出
摘要 针对电力系统暂态稳定的特点和要求,运用人工神经网络并结合D-S证据理论的信息融合技术,提出了一种暂态稳定评估模型。这个模型综合来自不同传感器的信息,筛选出能迅速反映暂态稳定的特征量,并把特征量按照时间和空间进行分类,最后将这些特征量输入到该模型,得到电力系统暂态稳定评估的最终结果。在4机11节点的测试系统上进行的仿真表明:采用信息融合的模型,能提高运算速度和降低误判率,为在线进行电力系统的暂态稳定分析提供了一条新的思路。 In accordance with the characteristics and request of power system trarusient stability, a transient stability assessment model is proposed by utilizing artificial neural network and D-S evidence theory based on information fusion technology. This model synthesizes information from different sensors, chooses characteristic quantities which can rapidly reflect the transient stability, then carries on the classification of the characteristic quantities according to the time and the space. These characteris- tic quantities are inputted into the information fusion model. The final result of power system transient stability assessment is ob- tained. Simulation results on 4 generator 11 bus test system show that the operating speed can be enhanced and the wrong call rate can be reduced if the information fusion model is used.
出处 《电力科学与工程》 2005年第4期49-53,共5页 Electric Power Science and Engineering
关键词 特征量 信息融合 人工神经网络 D-S证据理论 电力系统 暂态稳定分析 characteristic quantity information fusion artificialneural network D-S evidence theory power system transient stability assessment
作者简介 黄辉(1980-),男,湖北黄石人,武汉大学硕士生,主要研究方向:电力系统智能控制与在线检测; 舒乃秋(1953-),男,湖北黄岗人,武汉大学教授,主要研究方向:电力系统在线监测与传感器应用。
  • 相关文献

参考文献10

二级参考文献26

  • 1方崇智 萧德云(Fang Chongzhi Xiao Deyun).过程辨识(Process Identification)[M].北京:清华大学出版社(Beijing:Tsinghua University Press),2000..
  • 2[1]Liu C W, Su MC, Tsay S S, et al. Application of a novel fuzzy neural network to real-time transient stability swings prediction oased on synchronized phasor measurements [J].IEEE Trans. on Power Systems, 1999,14 (2): 685-692.
  • 3[2]IEEE Std 1344-1995 (R2001). IEEE standard for synchrophasors for power systems [S]. 2001.
  • 4[3]Burnett R O, Butts M M, Cease T W, et al. Synchronized phasor measurements of a power system event [J]. IEEE Trans. on Power Systems, 1994,9 (3): 1643-1650.
  • 5[4]Vapnik V. The nature of statistical learning theory [M]. New York: Springer-Verlag, 1995.
  • 6[5]Kim H C, Pang S N, Je H M, et al. Pattern classification using support vector machine ensemble [C]. 16th International Conference on Pattern Recognition, 2002.160-163.
  • 7[6]Jiawei H,Micheline K. Data mining:concepts and techniques[M]. Simon Fraser University: Morgan Kaufmann Publishers, 2000.
  • 8焦李成,神经网络的应用与实现,1995年
  • 9史忠植,神经计算,1993年
  • 10杜正春,全国高校电力系统及其自动化专业第八届年会论文集.中,1992年

共引文献172

同被引文献25

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部