期刊文献+

面向客户需求的神经网络挖掘方法 被引量:3

The Customer-Demand-Oriented Neural Network Data Mining Method
在线阅读 下载PDF
导出
摘要 客户细分是客户关系管理的主要内容,对客户进行细分有助于优化企业资源配置和对客户进行差异化服务进而提高客户满意度。很多文献根据客户对企业的贡献利用相关模型对客户进行了细分,本文从差异化服务出发,根据客户的需求特征或需求层次对客户进行了细分,这有助于预测客户的需求和减少企业的营销成本。在具体细分过程中根据数据挖掘的思想采用了自组织映射神经网络模型,并通过模拟说明了模型的有效性。 As a main component of the CRM, customer segmentation can help the enterprise distribute the resources reasonably and raise the customer′s satisfaction through differentiated services. Some papers classify the customer using the model based on the customer′s contribution to the enterprise, while this paper, from the angle of different service, classifies the customer basing on the customer′s demand characteristic. This classification can help forecast the customer′s demand and reduce the marketing cost. In the classification, this paper uses the network of self-organization map based on the idea of data mining, and proves the effectiveness of this method through imitation.
出处 《管理评论》 2005年第11期53-57,共5页 Management Review
作者简介 赵宏霞,辽宁工程技术大学工商管理学院博士研究生。 杨皎平,辽宁工程技术大学工商管理学院讲师。 陈宗娇,辽宁工程技术大学工商管理学院硕士研究生。
  • 相关文献

参考文献14

二级参考文献53

  • 1吴立蓉.客户关系管理的两点异议[J].北京市经济管理干部学院学报,2002,17(3):45-46. 被引量:2
  • 2张立华,邵良杉,刘伟华.银行客户关系管理评价体系[J].辽宁工程技术大学学报(社会科学版),2003,5(3):32-34. 被引量:5
  • 3[美]AbhijitS Pandya RobertBMacy 徐勇 荆涛 等译.神经网络模式识别及其实现[M].北京:电子工业出版社,1999..
  • 4陈放 合得莉 原秀卿.整合策划技术[M].北京:时事出版社,2001..
  • 5[1]BARCI E, STRIULI A, Quality as a measurement of customer perception and satisfaction in mobile TLC, In: Proceeding of International Conference on Communication Technology. Beijing, China :IEEE Electronic industry Publishing House, 1996,400~403
  • 6[2]MIHELIS G, GRIGOROUDIS E, Customer satisfaction measurement in the private bank sector, European Journal Operation Reseach, 2001,130(2): 347~360.
  • 7[3]唐晓芬.顾客满意测评.上海:上海科学技术出版社,2002
  • 8[8]Saaty T L. The analytical hierarchy process. New York: McGraw Hill, 1980
  • 9[9]Mon Donlin, Cheng Chinghsue, Lin Jiaanchern, Evaluating Weapon system using fuzzy annalistic hierarchy process based on entropy weight, Fuzzy Set and Systems,1994,(62):127~134.
  • 10[11]Dider Dybois Henri Prade,The mean value of a fuzzynumber. Fuzzy Set and Systems,1987,(24):279~301

共引文献71

同被引文献26

  • 1李涛,王建东,叶飞跃,冯新宇,张有东.一种基于用户聚类的协同过滤推荐算法[J].系统工程与电子技术,2007,29(7):1178-1182. 被引量:70
  • 2Sarwar B, Kaypis G, Konstan J, Riedl J. Analysis of Recommendation Algorithms for E-Commerce. Proceedings of the 2nd ACM conference on Electronic commerce. New York: ACM Press, 2000.158-167.
  • 3Kaypis G. Evaluation of item-based top-n recommendation algorithms. Proc. of the 10th International Conference on Information and Knowledge Management. New York: ACM Press, 2001.247-254.
  • 4Sarwar B, Kaypis G, Konstan J, Riedl J. Item-based collaborative filtering recommendation algorithms. Proc. Ofthe lOth International Conference on World Wide Web. New York: ACM Press, 2001.285-295.
  • 5Sarwar B. Sparsity, scalability and distribution in recom- mender systems [Ph.D. Thesis]. Minneapolis: University of Minnesota, 2001.
  • 6Linden G, Smith B, York J. Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet Com- puting, 2003,7(1):76-80.
  • 7马庆国.管理统计:数据获取、统计原理.SPSS工具与应用研究.北京:科学出版社,2002.315-326.
  • 8SARWAR B M, KARYPIS G, KONSTAN J A, et al. Analysis of recommendation algorithms for E-commerce [ C ]//Proc of the 2nd ACM Conference on Electronic Commerce. New York: ACM Press, 2000:158-167.
  • 9SARWAR B M, KARYPIS G, KONSTAN J A, et al. hem-based collaborative filtering recommendation algorithms [ C ]//Proc of the 10t~ International Conference on World Wide Web. New York: AC~ Press, 2001:285-295.
  • 10MARLIN B. Collaborative filtering: a machine learning perspective [ D ]. Toronto : University of Toronto, 2004.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部