期刊文献+

一种时间序列快速分段及符号化方法 被引量:4

A Fast Time Series Segmentation and Symbolization Method
在线阅读 下载PDF
导出
摘要 作为一类重要的复杂类型数据,时间序列已成为数据挖掘领域的热点研究对象之一。针对时间序列的挖掘通常首先需要将时间序列分段并转变为种类有限的符号序列,以利于进一步进行时间序列模式挖掘。针对当前的时间序列分段方法复杂度较大,效率不高等问题,本文提出了一种简单高效的基于拐点检测的时间序列分段方法,并且采用动态时间弯曲度量计算不等长子序列的相异度,最后运用层次化聚类算法实现子序列的分类及符号化。实验表明,本文所提出的方法切实可行,实验结果具有较为明显的物理意义。 Abstract As one of the important forms of complex data, time series is a hotspot in data mining area. Sequence pattern mining is based on time series symbolization, which segments the time series into sub-series and labels them. But most current time series segmentation algorithms are with large computation complexity, so the paper introduces a simple but high efficiency time series segmentation method based on change point detection. And dynamic time warping (DTW) method is used to compute the distance of the sub-series, later the hierarchical clustering is used to group the sub-series and label them. The experiments show the proposed method is feasible and the results are meaningful.
出处 《计算机科学》 CSCD 北大核心 2005年第9期166-169,共4页 Computer Science
基金 国家自然科学基金(60374059) 广东省自然科学基金(04300462)
关键词 时间序列 拐点 符号化 数据挖掘 分段方法 Time series, Change point, Symbolization
作者简介 任江涛 博士,讲师.
  • 相关文献

参考文献8

  • 1李斌,谭立湘,章劲松,庄镇泉.面向数据挖掘的时间序列符号化方法研究[J].电路与系统学报,2000,5(2):9-14. 被引量:29
  • 2HandD MannilaH SmythP 张银奎 廖丽 宋俊.数据挖掘原理[M].北京:机械工业出版社,2003.48-54.
  • 3David D G, Heikki M, et al. Rule Discovery from time Series. In: Proc. Fourth annual Conference on Knowledge Discovery and Data Mining
  • 4Kohlmorgen J,StevenLemm. An on-line method for segmentationand identification of non-stationary time series. In NNSP 2001: Neural Networks for Signal Processing Ⅺ, 2001. 113~ 122
  • 5Himberg J, Korpiaho K, et al. Time series segmentation for context recognition in mobile devices. 2001 IEEE International Conference on Data Mining (ICDM 2001 ), San José, California,USA, 2001. 203~210
  • 6Fu T-C, Fulai, Vincent Ng C, Luk R. Evolutionary segmentation of financial time series into subsequences. In: Proc. of the 2001
  • 7WAYNE A. TAYLOR Baxter Healthcare Corporation. Round Lake, IL 60073 Change-Point Analysis: A Powerful New Tool For Detecting Changes. http:∥www. variation. com/cpa/tech/ changepoint. html
  • 8Keogh E J ,Pazzani M J. Scaling up dynamic time warping to mas sive datasets. In:Proc. of the 3rd European Conf. on Principles of Data Mining and Knowledge Discovery (PKDD), 1999.1~11

二级参考文献4

  • 1Das Gautam, Lin David, Mannila Heikki, et al. Rule Discovery from Time Series. In: Proc. Fourth Annual Conference on Knowledge Discovery and Data Mining.
  • 2Andrea Baraldi, Ethem Alpaydm. Simplified ART: A New Class of ART Algorithms. Technique Report of INTERNATIONAL COMPUTER SCIENCE INSTITUTE , California: Berkeley, 1998.
  • 3Keogh E. Fast Similarity Search in the Presence of Longitudinal Scaling in Time Series Databases. In: Proceedings of the 9th international Conference on Tools with Artificial Intelligence. [s. 1.]: IEEE Press, 1997. 578-584
  • 4黎明,严超华,刘高航.基于遗传策略和神经网络的非监督分类方法[J].软件学报,1999,10(12):1310-1315. 被引量:3

共引文献33

同被引文献31

  • 1肖辉,胡运发.基于分段时间弯曲距离的时间序列挖掘[J].计算机研究与发展,2005,42(1):72-78. 被引量:60
  • 2俞康庆,周月华,杨荆安,康卓.气象要素时间序列的演化建模分析与短期气候预测[J].干旱气象,2005,23(4):1-6. 被引量:9
  • 3倪巍伟,陆介平,陈耿,孙志挥.基于k均值分区的数据流离群点检测算法[J].计算机研究与发展,2006,43(9):1639-1643. 被引量:20
  • 4Yoon Hyunjin,Yang Kiyoung,Cyrus Shahabi.Feature subset selection and feature ranking for multivariate time series[C].IEEE Trans Knowl Data Eng,2005,17(9): 1186-1198.
  • 5Guyon I,Elisseeff A.An Introduction to variable and feature selection [J]. Machine Learning Research, 2003 (3): 1157- 1182.
  • 6Guyon I,Weston J,Barnhill S,et al.Gene selection for cancer classification using support vector machines[J].Machine Learning, 2002,46(1-3):389-422.
  • 7Yang Kiyoung,Yoon Hyunjin, Cyrus Shahabi.A supervised feature subset selection technique for multivariate time series[C]. SDM 2005 International Workshop on Feature Seleetion for Data Mining: Interfacing Machine Learning with Statistics (FSDM),2005.
  • 8Han Jw, Kam Ber M.Data mining:Concepts and techniques[M]. San Fransisco:Morgan Kaufmann,2006.
  • 9胡春春,孟令奎,谢文君,周新忠.空间数据模糊聚类的有效性评价[J].武汉大学学报(信息科学版),2007,32(8):740-743. 被引量:5
  • 10Jr Webber C L, Zbilut J P. Dynamical Assessment of Physiological Systems and States Using Recur- rence Plot Strategies[J]. Journal of Applied Physi- ology, 1994, 76(2): 965-973.

引证文献4

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部