期刊文献+

基于遗传算法的时间序列中频繁结构模式发现研究 被引量:2

Discovering Frequent-merging Configuration Patterns in Time Series Using Genetic Algorithm
在线阅读 下载PDF
导出
摘要 本文提出了一个基于小生境遗传算法和模式缓存的时间序列中频繁结构模式的发现算法,该算法具有轻便、灵活、可扩放性好的特点,可根据实际情况合理配置计算时间和所占用的内存资源,并可实现挖掘结果的实时动态更新输出,在实际时间序列数据上的实验证明了该算法的有效性。 An Algorithm based on multiple-niche genetic algorithm and the technique of pattern caching for discovering frequent-emerging configuration patterns in time series is proposed. Using this algorithm, memory resources can be appropriately allocated, computational time can be shorten, the result of data-mining process can be updated in real time. The effectiveness of proposed algorithm is verified by the experiment on the real data of time series as to show its merits as convenient, flexible and scalable.
出处 《电路与系统学报》 CSCD 2004年第4期81-85,133,共6页 Journal of Circuits and Systems
基金 国家自然科学基金资助项目(60171029) 中国科技大学留学回国人员科研启动基金资助项目(KB2509)
关键词 时间序列 数据挖掘 频繁结构模式 遗传算法 模式缓存 time series data mining frequent-emerging configuration pattern genetic algorithm pattern caching
  • 相关文献

参考文献9

  • 1Agrawal R, Srikant R. Fast algorithm for mining association rules [A]. Proc. 1994 Int. Conf. Very Large Data Bases [C]. Santiago, Chile, 1994-09, 487-499.
  • 2Mannila H, Toivonen H, Verkamo A I. Discovering frequent episodes in sequences [A] Proc. Of KDD- 95 [C] Montreal, Canada, 1995-08, 210-215.
  • 3李斌,谭立湘,解光军,李海鹰,庄镇泉.非同步多时间序列中频繁模式的发现算法[J].软件学报,2002,13(3):410-416. 被引量:8
  • 4Flockhart Ian W, Radcliffe Nicholas J. A Genetic Algorithm-Based Approach to Data Mining. KDD [S]. 1996, 299-302.
  • 5Cattral Robert, Oppacher Franz, Deugo Dwight. Using Genetic Algorithms to Evolve a Rule Hierarchy. PKDD [S]. 1999, 289-294.
  • 6Szpiro George G. A Search for Hidden Relationships: Data Mining with Genetic Algorithms, Computational Economics [M]. Kluwer Academic Publishers, 1997, 10: 267-277.
  • 7李斌,谭立湘,章劲松,庄镇泉.面向数据挖掘的时间序列符号化方法研究[J].电路与系统学报,2000,5(2):9-14. 被引量:29
  • 8Mannila Heikki, Toivonen Hannu. Discovering generalized episodes using minimal occurrences [A]. Second International Conference on Knowledge Discovery and Data Mining [C]. Portland, Oregon, AAAI Press, 1996-08-2/4, 146-151.
  • 9Povinelli Richard J. Comparing Genetic Algorithms Computational Performance Improvement Techniques [A]. Artificial Neural Networks in Engineering, Proceedings [C]. 2000, 305-310.

二级参考文献5

  • 1Das Gautam, Lin David, Mannila Heikki, et al. Rule Discovery from Time Series. In: Proc. Fourth Annual Conference on Knowledge Discovery and Data Mining.
  • 2Andrea Baraldi, Ethem Alpaydm. Simplified ART: A New Class of ART Algorithms. Technique Report of INTERNATIONAL COMPUTER SCIENCE INSTITUTE , California: Berkeley, 1998.
  • 3Keogh E. Fast Similarity Search in the Presence of Longitudinal Scaling in Time Series Databases. In: Proceedings of the 9th international Conference on Tools with Artificial Intelligence. [s. 1.]: IEEE Press, 1997. 578-584
  • 4黎明,严超华,刘高航.基于遗传策略和神经网络的非监督分类方法[J].软件学报,1999,10(12):1310-1315. 被引量:3
  • 5李斌,谭立湘,章劲松,庄镇泉.面向数据挖掘的时间序列符号化方法研究[J].电路与系统学报,2000,5(2):9-14. 被引量:29

共引文献33

同被引文献2

  • 1Chiu B, Keogh E, Lonardi S. Probabilistic Discovery of Tune Series Motifs[C]//Proc. of Conference on Knowledge Discovery in Data. Washington D. C., USA: [s. n.], 2003.
  • 2Tanaka Y, Iwamoto K, Uehara K. Discover of Time-series Motif from Multi-dimensional Data Based on the MDL Principle[J]. Machine Learning, 2005, 58(2/3): 269-300.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部