期刊文献+

张量积二次长方体有限元梯度最大模的超逼近 被引量:2

MAXIMUM-NORM SUPERAPPROXIMATION OF THE GRADIENT FOR THE TENSOR-PRODUCT QUADRATIC RECTANGULAR PARALLELEPIPED FINITE ELEMENT
原文传递
导出
摘要 对于某种三维椭圆边值问题,本文给出了长方体剖分下张量积二次长方体有限元的第一型弱估计以及离散导数Green函数的W1,1半范估计,利用这两个估计本文获得了张量积二次长方体有限元梯度最大模的超逼近.进而,由超逼近也可以得到这种有限元梯度最大模的超收敛. For an elliptic boundary value problem in three dimensions this paper will give the weak estimate of the first type for tensor-product quadratic rectangular parallelepiped elements and the estimate for the W^1' 1 seminorm of the discrete derivative Green's function over rectangular parallelepiped partitions of the domain, from which this paper will obtain maximum-norm superapproximation of the gradient for the tensor-product quadratic rectangular parallelepiped finite element. Furthermore, by this superapproximation, maximum-norm superconvergence of the gradient for the finite element can also be obtained.
出处 《计算数学》 CSCD 北大核心 2005年第3期267-276,共10页 Mathematica Numerica Sinica
基金 国家自然科学基金资助项目(10371038).
关键词 有限元 长方体 超逼近 第一型弱估计 离散导数Green函数 最大模 张量积 梯度 GREEN函数 椭圆边值问题 finite elements, rectangular parallelepiped, superapproximation,weak estimate of the first type, discrete derivative Green's function
  • 相关文献

参考文献1

二级参考文献31

  • 1A B Andreev. Error estimate of type superconvergence of the gradient for quadratic triangular elements. C R Acad. Bulgare Sci., 36 (1984), 1179-1182.
  • 2A B Andreev and R D Lazarov, Superconvergence of the gradient for quadratic triangular finite elements, Numer. Methods Partial Differential Equations, 4 (1988), 15-32.
  • 3F A Bornemann, B Erdmann, and R. Kornhuber, A posteriori error estimates for elliptic problemsin two and three space dimensions, SIAM J. Numer. Anal., 33:3 (1996), 1188-1204.
  • 4J H Brandts, Superconvergence and a posteriori error estimation for triangular mixed finite elements, Numer. Math., 68:3 (1994), 311-324.
  • 5J H Brandts, Superconvergence for triangular order k = 1 Raviart-Thomas mixed finite elements and for triangular standard quadratic finite element methods. Appl. Numer. Anal., 34 (2000),39-58.
  • 6J H Brandts and M Krizek, History and future of superconvergence in three-dimensional finiteelement methods. Proc. Conf. Finite Element Methods: Three-dimensional Problems, GAKUTO Internat. Ser. Math. Sci. Appl., 15:24-35, Gakkotosho, Tokyo, 2001.
  • 7C M Chen, Optimal points of stresses for tetrahedron linear element (in Chinese). Natur. Sci. J. Xiangtan Univ., 3 (1980), 16-24.
  • 8P. Ciarlet, The finite element method for elliptic problems, North-Holland, Amsterdam, 1978.
  • 9J Douglas, T. Dupont, and M F Wheeler, An l^∞ estimate and a superconvergence result for a Galerkin method for elliptical equations based on tensor products of piecewise polynomials,RAIRO Anal. Numdr., 8 (1974), 61-66.
  • 10J Douglas and J E Roberts, Global estimates for mixed methods for second order elliptic problems, Math. Comp., 44:169 (1985), 39-52.

共引文献6

同被引文献16

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部