期刊文献+

基于布尔剪枝的多值广义量词Tableau推理规则简化方法 被引量:5

A Method of Simplifying Many-Valued Generalized Quantifiers Tableau Rules Based on Boolean Pruning
在线阅读 下载PDF
导出
摘要 Tableau作为自动推理的有效方法之一在许多领域中有重要的应用.该文作者在已提出的布尔剪枝方法基础上,对含广义量词(交和并)规则的简化方法进行研究,建立了一套含广义量词的一阶多值逻辑公式的简化Tableau推理方法.通过实例分析,对简化前后结果对比表明,改进后的Tableau方法,在推理效率上有很大的提高. As one of effective automated reasoning methods, Tableau has been apply to many important fields. Tableau methods with generalized quantifiers are very difficulty for computer to implement. Because the number of the branches extended is very large, a Boolean pruning method was proposed in many-valued logic. Tableau rules with such quantifiers can been simplified by providing a link between signed formulas and upset/downset in Boolean set lattices. On the basis of the presented Boolean pruning method, authors research on simplifying Tableau reasoning method for generalized meet and join to build a set of reasoning methods with generalized quantifiers in first-order many-valued logic. Through the analyses of examples and compare its performance to former approach, the result shows the improved Tableau method can have a great enhancement of the inference efficiency.
出处 《计算机学报》 EI CSCD 北大核心 2005年第9期1514-1518,共5页 Chinese Journal of Computers
基金 国家自然科学基金(60273080 60473003)资助
关键词 布尔剪枝 多值逻辑 广义量词 TABLEAU 集合的上集/下集 Boolean pruning many- valued logic generalized quantifiers Tableau upset/downset in set
作者简介 刘全,男,1969年生,博士,副教授,研究方向为智能信息处理、自动推理、地理信息系统.E-mail:quanliu@suda.edu.cn. 孙吉贵,男,1963年生,博士,教授,博士生导师,研究方向为人工智能、自动推理、行末推理. 崔志明,男,1961年生,教授,博士生导师,研究方向为知识工程、智能信息处理.
  • 相关文献

参考文献8

  • 1Carnielli W.A.. Systematization of finite many-valued logics through the method of Tableaux.Journal of Symbolic Logic,1987, 52(2): 473~493.
  • 2Zabel R.. Proof theory of finity-valued logics[Ph. D. dissertation].Institut für Algebra und Diskrete Mathematic, TU Wien, 1993.
  • 3刘全,孙吉贵.提高一阶多值逻辑Tableau推理效率的布尔剪枝方法[J].计算机学报,2003,26(9):1165-1170. 被引量:10
  • 4Fitting M.C.. First-Order Logic and Automated Theorem Proving. New York: Springer Verlag, 1996.
  • 5Fitting M.C.. Types and Tableau. New York:Springer Verlag,2000.
  • 6Davey B.A., Priestley H.A.. Introduction to lattices and order. Cambridge Mathematical Textbooks. Cambridge: Cambridge University Press, 1990.
  • 7刘全,孙吉贵.非经典逻辑的语义tableau方法[J].计算机科学,2002,29(5):72-75. 被引量:10
  • 8Bertossi L., Schwind C.. Analytic Tableaux and database repairs. In: Eiter T. ed.. Foundations of Information and Knowledge Systems, Lecture Notes in Computer Science 2284. New York: Springer, 2002, 32~48.

二级参考文献36

  • 1孙吉贵,刘叙华.表推演方法[J].计算机科学,1995,22(6):45-48. 被引量:2
  • 2Bessonet C G. A Many-Valued Approach to Deduction and Reasoning for Artifical Inteligence. Boston: Kluwer Academic Publishers, 1991.
  • 3Hgthnle R, Kernig W. Verification of switch level designs with many-valued logic. In: Proceedings of LPAR' 93, St. Petersburg, Russia, 1993. 158-169.
  • 4Kerber M, Kohlhase M. A Tableau calculus for partial functions. In: Collegium Logicum. Annals of the Kurt-Godel-Society. New York: Springer-Verlag, 1996. 21-49.
  • 5Bonissone P P. Soft computing: the convergence of emerging reasoning technologies. Soft Computing A Fusion of Foundations, Met hodologies and Applications, 1997,1 ( 1 ) : 6- 18.
  • 6Pearl J. Probabilistic Reasoning in Intelligent System:Networks of Plausible Inference. Revise Second Edition. Morgan Kaufmann,1994.
  • 7Messing B. Combining knowledge with many-valued Logies. In:Data Knowledge Engineering. Boston: Kluwer Aeademie Publishers,1997.
  • 8Zabel R. Proof theory of finity-valued logics [Ph D dissertationS. Institut far Algebra und Diskrete Mathematic,TU Wien,1993.
  • 9Hfihnle R. Uniform notation of Tableaux rules for multiple-valued logics. In: Proceedings of International Symposium on Multiple-Valued Logic, Los Alamitos, 1991. 238- 245.
  • 10Haihnle R. Automated Deduction in Multiple-Valued Logics.Britain:Oxford University Press,1994.

共引文献11

同被引文献43

  • 1刘全,孙吉贵,于万钧.自由变量语义tableau中δ-规则的一种改进方法[J].计算机研究与发展,2004,41(7):1068-1073. 被引量:8
  • 2WUXia SUNJigui LINHai FENGShasha.Modal extension rule[J].Progress in Natural Science:Materials International,2005,15(6):550-558. 被引量:7
  • 3刘全,伏玉琛,孙吉贵,崔志明,龚声蓉,凌兴宏.一种基于集合符号的自动推理扩展方法[J].计算机研究与发展,2007,44(8):1317-1323. 被引量:4
  • 4Bertossi L. Database repairing and consistent query answering [M]. Morgan & Claypool publishers,2011.
  • 5Arenas M, Bertossi L,Chomicki J. Consistent query answers in inconsistent databases[C]// ACM Symposium on Principles of Database Systems(ACM PODS' 99). ACM Press, 1999 : 68-79.
  • 6Bertossi L,Schwind C. An analytic tableaux based characteriza- tion of database repairs for consistent query answering(prelimi- nary report)[C]///Working Notes of the IJCAI' 01 Workshop on Inconsistency in Data and Knowledge. AAAI Press, 2001 : 96- 106.
  • 7Fan W, Geerts F, Ma S, et al. Detecting inconsistencies in dis- tributed data[C]//the IEEE International Conference on Data Engineering (ICDE). 2010:64-75.
  • 8Fan W,Jia X,Li J,et al. Reasoning about record matching rules [J]. the International Conference on Very large Data Bases ( VLDB), VLDB Endowment, 2009,2 (1) : 407-418.
  • 9Bertossi L. Consistent query answering in databases[J]. ACM SIGMOD Record, 2006,35(2) : 68-79.
  • 10Chomieki J, Marcinkowski J, Staworko S. Computing consistent query answers using conflict hypergraphs[C]//ACM Interna- tional Conference on Information and Knowledge Management. Washington IX;: ACM Press, 2004: 417-426.

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部