期刊文献+

三维李三系及其导子代数

Three-dimensional Lie triple systems and their derivation algebras
在线阅读 下载PDF
导出
摘要 根据李三系的Levi分解定理和Yamaguti关于二维李三系的分类结果,证明了复数域上的三维李三系可以写成一个半单李三子系和它中心的直和。在此基础上,对复数域上的三维李三系进行了分类,详细给出了每类李三系的乘法表。利用三维李三系的分类结果,计算了每种类型的李三系的导子代数的结构。 Based on the Levi theorem of Lie triple systems and the classification result of Yamaguti about two-dimensional Lie triple systems, it is concluded that a three-dimensional non-solvable Lie triple can be written as the direct plus of a two-dimensional simple subsystem and its center in a complex field. The three-dimensional Lie triple system is classified. The no-zero multiplication table of Lie triple system is presented. The derivation algebras are calculated. The matrix elements of derivation algebra are obtained.
出处 《华北电力大学学报(自然科学版)》 CAS 北大核心 2005年第4期110-112,共3页 Journal of North China Electric Power University:Natural Science Edition
关键词 李三系 导子代数 中心 可解的 乘法表 Lie triple system derivation algebra center solvable multiplication talbe
  • 相关文献

参考文献7

  • 1Lister V G. A structure theory for Lie triple system [J].Trans. AmerMath Soc, 1952,172: 217-242.
  • 2Kac V. Infinite dimensional Lie algebra [M]. Cambridge:Cambridge Press, 1990.
  • 3Yamaguti K. On algebras of totally geodesic space (Lie triple system) [J]. J. sci. HiroshimaUniv. Ser. A, 1957,21 (2):155-159.
  • 4Heigason S. Diffenerial geometry, Lie group, and symmeteic space [M]. Academic Press, 1978.
  • 5Kamiya N. The nilpotent ideal for Lie and anti-Lie triple system [J]. J. Algebra, 1993,158: 226-232.
  • 6Hopkins N C. Simplicity of Lie module triple system [J].Comm. Alg. 1991,19 (8): 2231-2237.
  • 7Hopkins N C. Some structure theory for a class of triple systems [J]. Trans. Amer. Math. Soc., 1985,289 (1): 203-212.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部