期刊文献+

应用极值理论预测开放式基金赎回量 被引量:6

Predicting Amount of Accrued Payables to Redeem Open-End Funds by Extreme Value Theory
在线阅读 下载PDF
导出
摘要 对产生开放式基金流动性风险的主要原因之一开放式基金的巨额赎回做了阐述,将极值理论运用在流动性风险的测量之中·通过分析发现,I型极值分布适用于预测开放式基金赎回量发生的概率,并运用极大似然法对参数进行了估计及拟合优度检验·同时还应用蒙特卡罗方法对所得结果做进一步的模拟实验,对基金赎回量的均值和标准差做出预测·基金管理人可以根据一定的概率,预测出基金的赎回量,进而预留出适当的现金,为合理地规避开放式基金的流动性风险提供了一种很好的预测方法· Elaborates one of the main reasons for the liquidity risk of open-end funds that the amount of accrued payables will probably be so big and snap. The extreme value theory is introduced in measuring the liquidity risk, and the Type I extreme value distribution is found fit for predicting the probability of the amount of accrued payables to redeem open-end funds via analyzing the actual data. Furthermore, the maximum likelihood method is introduced to estimate relevant parameters with a chi-square test done for the goodness of fit of the model used. The data checked by Monte Carlo method are also used for a simulating test to predict the mean value and standard error of the amount of accrued payables and enable the fund management to reserve a certain amount of cash in accordance to the probability already predicted. In conclusion, a new reasonable way to keep away from the liquidity risk is provided to the fund management.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第2期190-193,共4页 Journal of Northeastern University(Natural Science)
基金 辽宁省自然科学基金资助项目(002012)
关键词 开放式基金 流动性风险 赎回 极值理论 预留现金 蒙特卡罗方法 open-end funds liquidity risk redemption extreme value theory cash reserve Monte Carlo method
  • 相关文献

参考文献9

  • 1朱国庆,张维,张小薇,敖路.极值理论应用研究进展评析[J].系统工程学报,2001,16(1):72-77. 被引量:24
  • 2刘海龙,仲黎明,吴冲锋.开放式基金流动性风险的最优控制[J].控制与决策,2003,18(2):217-220. 被引量:24
  • 3王金玉,汪温泉,潘德惠.开放式基金预留现金比例的研究[J].系统工程学报,2004,19(3):290-293. 被引量:13
  • 4俞雪飞,王金玉,潘德惠.非参数区间估计在证券投资分析中的应用[J].东北大学学报(自然科学版),2003,24(9):877-880. 被引量:5
  • 5Goldstein M, Kavajecz K. Eighths, sixteenths, and market depth: changes in tick size and liquidity provision on the NYSE[J ]. Journal of Financial Economics, 2000,56 ( 1 ) :125 - 149.
  • 6Sbi D J. Fisher information for a multivariate extreme value distribution [J ]. Biometrika, 1995,82(3) :644 - 649.
  • 7Russ W. Mutual fund performance: an empirical decomposition into stock-picking talent style transactions costs and expenses[J]. The Journal of Finance, 2000,55(4) : 1655 -1703.
  • 8Danid K, Mark G, Sheridan T, et al. Measuring mutual fund performance with characteristic-based benchmarks[J].The Journal of Finance, 1997,52(3) : 1035 - 1058.
  • 9Edelen R M. Investor flows and the assessed performance of open-end mutual funds[J]. Journal of Financial Economics,1999,53 ( 3 ) : 439 - 466.

二级参考文献26

  • 1史道济.马尔科夫链的Fisher信息阵及参数的最大似然估计[J].天津大学学报,1993,26(3):98-105. 被引量:4
  • 2史道济.二元极值分布参数的最大似然估计与分步估计[J].天津大学学报,1994,27(3):294-299. 被引量:6
  • 3史道济,阮明恕,王毓娥.多元极值分布随机向量的抽样方法[J].应用概率统计,1997,13(1):75-80. 被引量:28
  • 4赵林诚.U-统计量的收敛速度[J].科学探索,1981,1:89-94.
  • 5赵广辉.开放式基金[M].北京:机械工业出版社,2001.2-35.
  • 6[1]Perold A. The implementation shortfall: Paper versus reality[J]. J Portfolio Management,1988,14:4-9.
  • 7[2]Bertsima D, Lo A W. Optimal control of liquidation costs[J]. J Financial Markets,1998,1(1):1-50.
  • 8[3]Almgren R, Chriss N. Optimal liquidation[R].Chicago: The University of Chicago,1998.
  • 9[4]Jarrow R A. Market manipulation bubbles, corners andshort squeeze[J]. J Financial Quantity Analysis,1992,27(2):311-336.
  • 10Pennacchi G G. Identify the dynamics of real interest rates and inflation: evidence using survey data [J]. Review of Financial Studies, 1991,4(1):53-86.

共引文献60

同被引文献33

  • 1张利兵,王金玉,崔海波,潘德惠.基于跳跃-扩散过程的开放式基金预留现金比例[J].东北大学学报(自然科学版),2004,25(12):1203-1206. 被引量:2
  • 2李霞,王金玉,程巍,潘德惠.应用Bayes理论预测开放式基金大额赎回量[J].东北大学学报(自然科学版),2005,26(6):599-602. 被引量:4
  • 3王金玉,李霞,刘军.基于截尾分布理论预测开放式基金大额赎回量[J].南方经济,2006,35(2):47-53. 被引量:5
  • 4帅晋瑶,陈晓剑.开放式基金流动性指标研究[J].运筹与管理,2006,15(3):125-128. 被引量:5
  • 5[6]Fisher R A,Tippett L H C.Limiting forms of the frequency distributions of the largest of smallest member of a sample[J].Proc Camb Phil Soc,1928,24:180-190.
  • 6[8]Diebold F X,Schuermann T,Stroughair J D.Pitfalls and opportunities in the use of extreme value theory in risk management[J].Journal of Risk Finance,2000(1):30-36.
  • 7[9]Embrechts P,Kluppelberg C,Mikosch T.Modelling extremal events for insurance and finance[M].Berlin:Springer,1997.
  • 8[10]Pickands J.Statistical inference using extreme order statistics[J].The Annals of Statistics,1975 (3):119-131.
  • 9[11]Davison A C,Smith R L.Models for exceedances of high thresholds[J],Journal of the Royal Statistical Society,Series B,1990,52(3):393-442.
  • 10[12]Dekkers A L M,de-Haan L,On the estimation of the extreme-value index and large quantile functions[J].The Annals of Statistics,1989,17 (4):1795 -1832.

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部