摘要
This paper describes a novel, hybrid process developed to engineer the surfaces of austenitic stainless steels at temperatures below 450°C for the improvement in wear and corrosion resistance. The process is carried out in the plasma of a glow discharge containing both nitrogen and carbon reactive species, and facilitates the incorporation of both nitrogen and carbon into the austenite surface to form a dual-layer structure comprising a nitrogen-rich layer on top of a carbon-rich layer. Both layers can be precipitation-free at sufficiently low processing temperatures, and contain nitrogen and carbon respectively in supersaturated fee austenite solid solutions. The resultant hybrid structure offers several advantages over the conventional low temperature nitriding and the newly developed carburizing processes in terms of mechanical and chemical properties, including higher surface hardness, a hardness gradient from the surface towards the layer-core interface, uniform layer thickness, and much enhanced corrosion resistance. This paper discusses the main features of this hybrid process and the various structural and properties characteristics of the resultant engineered surfaces.
This paper describes a novel, hybrid process developed to engineer the surfaces of austenitic stainless steels at temperatures below 450°C for the improvement in wear and corrosion resistance. The process is carried out in the plasma of a glow discharge containing both nitrogen and carbon reactive species, and facilitates the incorporation of both nitrogen and carbon into the austenite surface to form a dual-layer structure comprising a nitrogen-rich layer on top of a carbon-rich layer. Both layers can be precipitation-free at sufficiently low processing temperatures, and contain nitrogen and carbon respectively in supersaturated fee austenite solid solutions. The resultant hybrid structure offers several advantages over the conventional low temperature nitriding and the newly developed carburizing processes in terms of mechanical and chemical properties, including higher surface hardness, a hardness gradient from the surface towards the layer-core interface, uniform layer thickness, and much enhanced corrosion resistance. This paper discusses the main features of this hybrid process and the various structural and properties characteristics of the resultant engineered surfaces.
出处
《材料热处理学报》
EI
CAS
CSCD
北大核心
2004年第5期307-310,共4页
Transactions of Materials and Heat Treatment