期刊文献+

非核特征标集合与正规子群 被引量:1

Irreducible Brauer Character and Normal Subgroups
在线阅读 下载PDF
导出
摘要 讨论了当N≤|G时,IBrp(G|N)对正规子群N的结构及N对G的扩张性质的影响.得到: 定理1 若N G,G/N是p′群,则对任意的非线性不可约pBrauer特征标φ∈IBrp(G|N)有:素数p不 整除φ(1)当且仅当N有正规Sylowp子群. 定理3 设G是p可解群,G/N是{p,q}′群,N G,素数p≠q.若对所有非线性不可约pBrauer特征标 φ∈IBrp(G|N)有q|φ(1),则N有一正规q补. 定理4 设G是p可解群,G/N是p′群,N G.素数p≠q.若对所有非线性不可约pBrauer特征标φ∈ IBrp(G|N′)有q|φ(1),则N有一正规q补. In this paper the effect of IBr_p(G|N) to the structure of the normal subgroup N and the extention of N to G is discussed. The authors get the following: Theorem 1 Let NG, G/N be a p′-group. Then the prime pφ(1) to arbitrary non-linear irreducible p-Braure character φ∈IBr_p(G|N) if and only if N has the normal Sylow p-subgroup. Theorem 3 Let G be a p-solvable group, G/N a {p, q}′-group, NG. the prime p≠q, If q|φ(1) to all non-linear irreducible p-Braure character φ∈IBr_p(G|N). Then N has a normal q-complement. Theorem 4 Let G be p-solvable group, G/N a p′-group, the subgroup NG. the prime p≠q. If q|φ(1) to all non-linear irreducible p-Braure character φ∈IBr_p(G|N′). Then N has a normal q-complement.
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2004年第6期929-931,共3页 Journal of Southwest China Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(10171074).
关键词 特征标 不可约 正规子群 素数 可解群 定理 P-子群 集合 整除 性质 irreducible p-Braure character Sylow p-subgroups normal p-complemment
  • 相关文献

参考文献3

  • 1Issacs I M, Knutson G. Irreducible Character Degrees and Normal Subgroups [J]. Algebra, 1998, 199:302 - 326.
  • 2Issacs I M. Character Theorey of Finite Groups [M]. New York-San Francisco-London: Academic Press, 1975.
  • 3Navarro G. Two Groups with Isomorphic Group Algebras [J]. Arch Math, 1990, 55:35 -37.

同被引文献11

  • 1叶凤英,张广祥.群的不可约特征标个数与群的阶[J].西南师范大学学报(自然科学版),2006,31(2):9-12. 被引量:4
  • 2[1]Navarro G.Characters and Blocks of Finite Groups[M].Cambridge:Cambridge University Press,1998.
  • 3[2]Isaacs I M.Character Theory of Finite Groups[M].New York:Academic Press,1976.
  • 4[3]Karpilovsky G.Projective Representations of Finite Groups[M].New York,Basel:Marcel Dekker,1985.
  • 5[4]Karpilovsky G.Structure Of Blocks of Group Algebras[M].Essex:Longman Scientific & Technical,1987.
  • 6[5]Karpilovsky G.The Jacobson Radical of Classical Rings[M].Essex:Longman Scientific & Technical,1991.
  • 7[6]Suzuki M.Group Theory (Ⅰ,Ⅱ)[M].New York:Springer-Verlag,1982,1986.
  • 8[7]Conlon S B.Twisted Group Algebras and Their Representations[J].J Australian Math Soc,1964,(4):152-173.
  • 9[8]Humphreys J F.Projective Modular Representations of Finite Groups[J].J London Math Soe,1977,16(2):61-66.
  • 10[9]Humphreys J F.Projective Modular Representations of Finite Groups Ⅱ[J].Glasgow Math J,1981,22:89-99.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部