期刊文献+

基于人工免疫系统的关联规则挖掘算法 被引量:4

Association rule mining algorithm based on artificial immune system
在线阅读 下载PDF
导出
摘要 给出了一个基于人工免疫系统的关联规则挖掘算法。将训练数据作为抗原 ,候选模式作为人工识别球 (ARB) ,通过免疫学习生成频繁模式并以免疫记忆的形式加以保存 ,最终生成关联规则。所给的应用实例说明本算法是可行。 In this paper, an algorithm for association rule mining is proposed based on artificial immune system. Training data are regarded as antigens and candidate patterns are regarded as artificial recognition balls. Frequent patterns, from which association rules are generated, are found through the immune learning and stored as the immune memory. A simulated example shows that the algorithm is very effective.
出处 《计算机应用》 CSCD 北大核心 2004年第8期50-53,共4页 journal of Computer Applications
基金 国家自然科学基金项目 (60 0 640 0 2 )
关键词 人工免疫系统 AIS 人工识别球 数据挖掘 关联规则 频繁集 artificial immune system AIS ARB data mining association rule frequent itemset
  • 相关文献

参考文献9

  • 1肖人彬,王磊.人工免疫系统:原理、模型、分析及展望[J].计算机学报,2002,25(12):1281-1293. 被引量:210
  • 2[2]Hunt JE,Cooke DE. Learning using an artificial immune system[J].Journal of Network and Computer Applications,1996,19(2):189-212.
  • 3[3]Timmis J.Artificial Immune System:A novel data analysis technique inspired by the immune network theory [D]. Department of Computer Science,University of Wales,2001.
  • 4[4]De Castro LN,Von Zuben FJ.An evolutionary immune network for data clustering[A].Proc 6th Brazilian Symposium on Neural Networks[C]. Rio de Janeiro,Brazil,2000.84-89.
  • 5[5]Han J,Kamber M.Data Mining:Concepts and Techniques[M].Beijing:Higher Education Press,2001.
  • 6[6]Hipp J,Guntzer U,Nakhaeizadeh G.Algorithms for association rule mining - a general survey and comparison[J].SIGKDD Explorations,2000,2(1):58-64.
  • 7[7]Perelson A.Immune network theory[J].Immunological Review,1989,110:5-36.
  • 8[8]Agrawal R,Srikant R.Fast algorithms for mining association rules[A].Proc of the 20th Int Conf on Very Large Databases(VLDB'94)[C].Santiago,Chile,1994.487-499.
  • 9[9]Blake CL,Merz CJ.UCI Repository of Machine Learning Databases[DB/OL].http://www.ics.uci.edu/~mlearn/MLRepository.html,1998.

二级参考文献59

  • 1HanJiawei Kamber M 范明等译.数据挖掘:概念与技术[M].北京:机械工业出版社,2001..
  • 2Timmis J, Neal M, Hunt J. Artificial immune system for data analysis. Biosystems, 2000, 55(1-3):143-150
  • 3Timmis J, Neal M. A resource limited artificial immune sys tem for data analysis. Knowledge Based Systems, 2001, 14(3 -4): 121-130
  • 4Timmis J, Knight T. Artificial immunes system: Using the immune system as inspiration for data mining. In: Abbass H A, Sarker R A, Newton C S eds. Data Mining: A HeuristicApproach. Hershey : Idea Publishing Group, 2001. 209- 230
  • 5Ishiguro A, Ichikawa S, Uchikawa Y. A gait acquisition of a 6-legged robot using immune networks. In: Proc IEEE/RSJ/ GI International Conference on Intelligent Robots and Systems, Munich, Germany, 1994, 2:1034- 1041
  • 6Ishiguro A, Shirai Y, Kondo T et al. Immunoid: An architec ture for behavior arbitration based on the immune networks. In: Proc IEEE/RSJ International Conference on Intelligent Robots and Systems, Osaka, Japan, 1996. 1730-1738
  • 7Ishiguro A, Kuboshiki S, Ichikawa S. Gait coordination of hexapod walking robots using mutual-coupled immune net works. In: Proc IEEE International Conference on Evolution ary Computation, Perth, Australia, 1995. 672-677
  • 8Dasgupta D, Forrest S. Artificial immune systems in industrial applications. In: Proc 2nd International Conference on Intelli gent Processing and Manufacturing of Materials, Honolulu, 1999. 257-267
  • 9Smith D J, Forrest S, Perelson A S. Immunological memory is associative. In: Dasgupta ed. Artificial Immune Systems and their Applications. Berlin: Springer, 1998. 105-112
  • 10Burnet F M. Clonal selection and after. In: Bell G I, Perelson A S, Pimbley G H eds. Theoretical Immunology, New York: Marcel Dekker Inc. , 1978. 63-85

共引文献209

同被引文献30

  • 1刘芳,孙杨军.基于多克隆选择的多维关联规则挖掘算法[J].复旦学报(自然科学版),2004,43(5):742-745. 被引量:9
  • 2Agrawal R,Imielinski T,and Swami A.Mining association rules between sets of items in large databases[C]∥Proc.1993 ACM-SIGMOD Int.Conf.Management of data.May 1993:207-216.
  • 3Feng Tao.Mining Binary Relationships from Transaction Data in Weighted Settings[D].School of Computer Science,Queen's University Belfast,UK,2003.
  • 4Mobasher B,Dai H,Luo T,et al.Effective personalization based on association rule discovery from web usage data[A].Mobasher B ed.3 rd Int Workshop on Web Information and Data Management (WIDM 2001)[C].New York:ACM Press,2001:9-15.
  • 5Catledge L,Pitkow J.Characterizing Browsing Behaviors on the World Wide Web[J].Computer Networks and ISDN System,1995(26):1065-1073.
  • 6Agrawal R, I miclinski T,Swami A. Database mining:A performance perspective [ J ]. IEEE Trans Knowledge and Data Enginnering, 1993,5:914-925.
  • 7Agrawal R, Srikant R. Fast algorithm for mining association rules [ C ]//Proceeding 1994 International conference Very Large Data Bases ( VLDB " 94 ). Santiago: Chile, 1994:487-499.
  • 8Han E, George K, Kumar V. Scalable parallel data mining for association rules [ C ]//Proceeding of the ACM SIGMOD97. New York : ACM Press , 1997:277-288.
  • 9Hetzler B, Harris W H, Harvre S,et al. Visualizing the full spectrum of document relationships [ C ]//Proceedings of the Fifth International Society for Knowledge Organization Conference, 1998 : 168-175.
  • 10De Castro L N, Fetnando J, Zuben V. Learning and Optimization Using the Clonal Selection Principle [ J ]. IEEE Trans on Evolutionary Computation, 2002, 6 ( 3 ) : 239-251.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部