期刊文献+

结合连续小波变换和多约束非负矩阵分解的故障特征提取方法 被引量:7

Fault feature extraction method combining continuous wavelet transformation with multi-consitraint nonnegative matrix factorization
在线阅读 下载PDF
导出
摘要 为了在故障早期从信噪比较低的振动信号中提取故障特征,提出了一种结合小波变换和多约束非负矩阵分解振动信号特征提取方法。首先,采用最小小波熵测量提取出最优时频系数矩阵。然后,根据故障特征在系数矩阵中的表现规律,采用基于稀疏性和光滑性约束的非负矩阵分解算法对小波系数矩阵进行非线性降维,从而提取信噪比较高的故障特征。最后,通过仿真数据和实际数据对该方法进行了验证,结果表明该方法能够在时域中提取出微弱的故障特征,实现机械状态的早期故障诊断。 In order to extract weak fault features from vibration signals mixing with noise, a method combining continuous wavelet transformation with multi-constraint nonnegative matrix factorization was presented here. Firstly, the continuous wavelet transformation was adopted to transform a signal into a time-frequency domain, and the optimal time-frequency coefficient matrix was extracted out using the minimum wavelet entropy method. Secondly, the non-negative matrix factorization based on sparsity and smoothness of constraints was used to reduce the dimensions of the optimal coefficient matrix according to the fault characteristics shown in the matrix so as to extract fault features with a higher signal-noise ratio. Finally, simulations and test data showed that this approach can effectively extract weak fault features and realize the early fault diagnosis.
出处 《振动与冲击》 EI CSCD 北大核心 2013年第19期7-11,共5页 Journal of Vibration and Shock
关键词 特征提取 连续小波变换 非负矩阵分解 故障诊断 Failure analysis   Fault detection   Feature extraction   Optimization
  • 相关文献

参考文献12

  • 1梁霖,徐光华,侯成刚.基于奇异值分解的连续小波消噪方法[J].西安交通大学学报,2004,38(9):904-908. 被引量:26
  • 2Brenner M J. Nonstationary dynamics data analysis withwavelet-SVD filtering[J].Mechanical Systems and SignalProcessing,2003,(04):765-786.
  • 3Lee D D,Seung H S. Learning in intelligent embedded systems[EB/OL].http://hebb.mit.edu/people/seung/papers/lee_es99.pdf,1999.
  • 4Kawamoto T,Hotta K,Mishima T. Estimation of single tones from chord sounds using non-negative matrix factorization[J].{H}NEURAL NETWORK WORLD,2000.429-436.
  • 5蔡蕾,朱永生.基于稀疏性非负矩阵分解和支持向量机的时频图像识别[J].自动化学报,2009,35(10):1272-1277. 被引量:16
  • 6栾美洁.基于非负矩阵分解的机械故障信号特征分析的研究[D]南京,东南大学,2009.
  • 7Mallat S. A theory for multiresolution signal decomposition:the wavelet representation[J].IEEE Trans Pattern Analysisand Machine Intelligence,1989,(07):674-693.
  • 8Lee D,Seung H S. Learning the parts of objects by nonnegative matrix factorization[J].{H}NATURE,1999.788-791.
  • 9Cichocki A,Zdunek R,Phan A H. Nonnogetive matrix and tensor factorizations[M].United Kingdom:Wiley & Sons,Ltd,Publications,2009.
  • 10Phan A H,Cichocki A. Multi-way nonnegative tensor factorization using fast hierarchical alternating leastsquares algorithm (HALS)[A].Budapest,Hungary,2008.

二级参考文献35

共引文献124

同被引文献70

  • 1樊新海,赵智勇,安钢,王凯.机械振动烈度的频域算法研究[J].装甲兵工程学院学报,2008,22(1):42-45. 被引量:27
  • 2王少萍,苑中魁,杨光琴.液压泵信息融合故障诊断[J].中国机械工程,2005,16(4):327-331. 被引量:35
  • 3李悦,程希骏.上证指数和恒生指数的copula尾部相关性分析[J].系统工程,2006,24(5):88-92. 被引量:54
  • 4王昆,朱荻,张朝阳.微细电解线切割加工的基础研究[J].中国机械工程,2007,18(7):833-837. 被引量:13
  • 5丁康,李巍华,朱小勇.齿轮及齿轮箱故障诊断实用技术[M].北京:机械工业出版社,2006,10-27.
  • 6Corinthios M J. A fast Fourier transform for high-speed signalprocessing [ J ]. Computers, 1EEE Transactions on, 1971, C - 20 (8) :843 -846.
  • 7Selesnick I W, Baraniuk R G, Kingsbury N G. The dual-tree complex wavelet transform [ J ]. Signal Processing Magazine, IEEE 2005,22 (6) :123 -151.
  • 8Zhu K, San W Y, Hang G S. Wavelet analysis of sensor signals for tool condition monitoring: a review and some new results[ J]. International Journal of Machine Tools & Manufacture,2009,49 (7 -8) :537 -553.
  • 9Oeak H, Loparo K A. A new bearing fault detection and diagnosis scheme based on hidden Markov modeling of vibration signals[ C ]. 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing,2001:3141 -3144.
  • 10Zhu K P, Wong Y S, Hong G S. Multi-category micro-milling tool wear monitoring with continuous hidden Markov models [ J]. Mechanical Systems and Signal Processing, 2009,23(2) : 547 - 560.

引证文献7

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部