期刊文献+

纳米非晶硅薄膜的界面发光特性 被引量:1

Analysis of Interface Luminescence in Nano-Sized Amorphous Silicon
在线阅读 下载PDF
导出
摘要 采用螺旋波等离子体增强化学气相沉积(HWP-CVD)技术沉积了不同氢稀释比的富硅氢化非晶氮化硅(a-SiNx:H)薄膜,并利用光致发光(PL)和光致发光激发(PLE)谱技术对其发光特性进行了研究.结果显示,所有样品发光均表现为两个带的叠加:一个发光带随氢稀释比增大而发生蓝移,另一个发光带则固定在2.9eV左右.前者关联于镶嵌在a-SiNx:H基质内非晶纳米硅颗粒的界面发光,后者来源于a-SiNx:H基质相关的局域态中电子和空穴对的辐射复合.并结合所沉积薄膜的吸收特性,分析了缺陷态和界面态对薄膜中非晶纳米硅界面发光特性的影响.
出处 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2007年第z1期91-94,共4页 半导体学报(英文版)
基金 河北省自然科学基金资助项目(批准号:E2006000999,E2004000119)
作者简介 傅广生,通信作者.Email:dwg@mail.hbu.cn
  • 相关文献

参考文献12

  • 1[1]Canham L T.Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers.Appl Phys Lett,1990,57(10):1046
  • 2[2]Koshida N,Koyama H.Visible electroluminescence from porous silicon.Appl Phys Lett,1992,60(3):347
  • 3[3]Pavesi L,Negro L D.Mazzoleni C,et al.Optical gain in silicon nanocrystals.Nature,2000,408(6811):440
  • 4[4]Park N M,Kim T S,Park S J.Band gap engineering of amorphous silicon quantum dots for light-emitting diodes.Appl Phys Lett,2001,78(17):2575
  • 5[5]Zing W P,Chang Y R,Hwang H L.White electroluminescence from hydrogenated amorphous-SiNx thin films.Appl Phys Lett,2002,80(16):2839
  • 6[6]Wang Y Q,Chen W D,Liao X B,et al.Amorphous silicon nanoparticles in compound films grown on cold substrates for high-efficiency photoluminescenc'e.Nanotechnology,2003,14:1235
  • 7[7]Yang M S.Cho K S.Jhe J H,et al.Effect of nitride passivation on the visible photoluminescence from Si-nanocrystals.Appl Phys Lett,2004,85(16):3408
  • 8[8]Fu Guangsheng,Yang Yanbin.Yu Wei.et al.Silicon nanoparticles in a-SiN,:H prepared by HWP-CVD.International Journal of Modern Physics B,2005,19(15~17):2704
  • 9[9]Chen Kunji.Ma Zhongyuan,Huang Xinfan,et al.Comparison between light emission from Si/SiNx and Si/SiO2 multilayers:role of interface states.J Non-Cryst Solids,2004,338~340:448
  • 10[10]Seol K S,Watanabe T,Fujimaki M,et al.Time-resolved photoluminescence study of hydrogenated amorphous silicon nitride.Phys Rev B,2000,62(3):1532

同被引文献19

  • 1L. T. Canham. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers [J]. Appl. Phys. Lett., 1990, 57(10): 1046-1048.
  • 2L. H. Lin, X. Z. Sun, R. Tao et al.. Photoluminescence origins of the porous silicon nanowire arrays [J]. J. Appl. Phys., 2011, 110(7): 073109.
  • 3O. Jambois, H. Rinnert, X. Devaux et al.. Photoluminescence and electroluminescence of size-controlled silicon nanocrystallites embedded in SiOz thin films[J]. J. Appl. Phys. , 2005, 98(4): 046105.
  • 4Tae-Youb Kim, Nae-Man Park, Kyung-Hyun Kim et al.. Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films[J]. Appl. Phys. Lett., 2004, 85(22): 5355-5357.
  • 5J. P. Prom, C. Delerue, G. Allan. Electronic structure and optical properties of silicon crystallites: application to porous silicon[J]. Appl. Phys. Lett., 1992, 61(16): 1948-1950.
  • 6J. B. Khurgin, G. S. Tompa, E. W. Forsytheetal. Influence of the size dispersion on the emission spectra of the Si nanostructures [ J ]. Appl. Phys. Lett. , 1996, 69 ( 9 ) : 1241-1243.
  • 7M. N. Islam, Satyendra Kumar. Influence of surface states on the photoluminescence from silicon nanostructures[J]. J. Appl. Phys., 2003, 93(3): 1753-1759.
  • 8S. Bhattacharya, D. Banerjee, K. W. Adu et al in silicon nanowires: optical properties[J]. Appl 2004, 85(11) : 2008-2009.
  • 9C. Meier, A. Gondorf, S. Luttjohann et al.. Silicon nanoparticales: absorption, emission, and the nature of the nature of the electronic bandgap[J]. J. Appl. Phys. , 2007, 101(10) : 103112.
  • 10M. Ray, N. R. Bandyopadhyay, U. Ghantaet al.. Temperature dependent photoluminescence from porous silicon nanostructures: quantum confinement and oxide related transitions[J].J. Appl. Phys., 2011, 110(9): 094309.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部