期刊文献+

道路网短期交通流预测方法比较 被引量:49

Short-term traffic flow prediction methods comparison of road networks
在线阅读 下载PDF
导出
摘要 介绍了用于短期交通流预测的两大类模型:统计预测算法和人工神经网络模型。对其中各种模型的特征进行了比较,将历史平均模型、求和自回归滑动平均模型(ARIMA)、非参数回归模型、径向基函数(RBF)神经网络模型与贝叶斯组合神经网络模型,应用于一个真实路网的短期流量预测,比较了各模型的预测结果。结果表明,组合神经网络模型预测误差最小,可靠性最高,是一种对短期交通流预测的有效方法。 A large number of techniques have been applied into short-term traffic flow prediction, which can be classified into two groups: statistical models and artificial neural network model. The models and their application were discussed and compared. Several models, including historical average, ARIMA (auto regressive integrated moving average) model, nonparametric regression, RBF (radial basis function) neural network and Bayesian combined neural network model were applied into a numerical example of short-term traffic volume prediction in a field network, their prediction results and performances were compared. It was found that the error of hybrid neural network model is littlest, its prediction reliability is highest, it is the most effective method to predicte short-term traffic flow. 2 tabs, 2 figs, 17 refs.
出处 《交通运输工程学报》 EI CSCD 2004年第4期68-71,83,共5页 Journal of Traffic and Transportation Engineering
关键词 交通工程 短期交通流 预测 方法 比较 Forecasting Mathematical models Motor transportation Neural networks Performance Regression analysis
作者简介 史其信(1946-),男,北京人,清华大学教授,从事智能交通系统研究.
  • 相关文献

参考文献17

  • 1[1]Ben-Akiva M,Koutsopoulos H N,Mukundan A.A dynamic traffic model system for ATMS/ATIS operations[J].IVHS Journal,1994,2(1):1-19.
  • 2[2]Cheslow M,Hatcher S G,Patel V M.An initial evaluation of alternative intelligent vehicle highway systems architecture[R].MITRE Report 92w0000063,MITRE Corporation, 1992.
  • 3[3]Davis G A,Nihan N L.Nonparametric regression and short term freeway traffic forecasting[J].Journal of Transportation Engineering,1991,117(2):178-188.
  • 4[4]Box G E P,Jenkins G M.Time series analysis:forecasting and control[R].San Francisco:Holden-Day,1977.
  • 5[5]Kalman R E.A new approach to linear filtering and prediction problems[J].Journal of Basic Engineering,1960,82(1):35-45.
  • 6[6]Okutani I,Stephanedes Y J.Dynamic prediction of traffic volume through Kalman filtering theory[J].Transportation Research,Part B,1984,18(1):1-11.
  • 7[7]Altman N S.An introduction to kernel and nearest-neighbor nonparametric regression[J].The American Statistician,1992,46(3):175-185.
  • 8[8]Dougherty M S.A review of neural networks applied to transport[J].Transportation Research,Part C,1995,3(4):247-260.
  • 9[9]Zhang H J,Ritchie S G,Lo Z P.Macroscopic modeling of freeway traffic using an artificial neural network[J].Transportation Research Record,1997,1588:110-119.
  • 10[10]Faghri A,Hua J.Evaluation of artificial neural network applications in transportation engineering[J].Transportation Research Record,1992,1358:71-80.

同被引文献441

引证文献49

二级引证文献546

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部