期刊文献+

Improved multi-orientation dispersion of short carbon fibers in aluminum matrix composites prepared with square crucible by mechanical stirring 被引量:5

Improved multi-orientation dispersion of short carbon fibers in aluminum matrix composites prepared with square crucible by mechanical stirring
原文传递
导出
摘要 In order to improve the strength of short carbon fibers reinforced aluminum matrix(Csf/Al)composite,the dispersion of short carbon fibers with multi-orientation was controlled with a square crucible by mechanical stirring.The three-dimensional flow field models of liquid aluminum melt in the square/round crucibles were established and calculated,and the results were compared.The calculated results show that turbulent flow could be induced both in the square and round crucible,while the non-axisymmetric structure of the square crucible results in higher turbulent kinetic energy in the melt.Therefore,the uniformity and multi-orientation dispersion of the short fibers can be improved by the intensive turbulent flow in the square crucible,which will be increased by increasing the rotational velocity.The distribution of the short carbon fibers in the aluminum matrix prepared under different rotation velocities in square crucible was experimentally investigated.With the increase of stirring velocity,the multi-orientation dispersion of the short fibers in the composites increased gradually.The experimental results are consistent with the calculation results.The tensile testing results show that the strength of the Csf/Al composite can reach 172 MPa when the rotational velocity is 1000 rpm,and it is 48.3%higher than that prepared by the round crucible under the same conditions,which results from the improved multi-orientation dispersion of short carbon fibers in aluminum matrix. In order to improve the strength of short carbon fibers reinforced aluminum matrix(Csf/Al) composite, the dispersion of short carbon fibers with multi-orientation was controlled with a square crucible by mechanical stirring. The three-dimensional flow field models of liquid aluminum melt in the square/round crucibles were established and calculated, and the results were compared. The calculated results show that turbulent flow could be induced both in the square and round crucible, while the non-axisymmetric structure of the square crucible results in higher turbulent kinetic energy in the melt. Therefore, the uniformity and multi-orientation dispersion of the short fibers can be improved by the intensive turbulent flow in the square crucible, which will be increased by increasing the rotational velocity. The distribution of the short carbon fibers in the aluminum matrix prepared under different rotation velocities in square crucible was experimentally investigated. With the increase of stirring velocity, the multi-orientation dispersion of the short fibers in the composites increased gradually. The experimental results are consistent with the calculation results. The tensile testing results show that the strength of the Csf/Al composite can reach 172 MPa when the rotational velocity is 1000 rpm, and it is 48.3% higher than that prepared by the round crucible under the same conditions, which results from the improved multi-orientation dispersion of short carbon fibers in aluminum matrix.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第5期81-87,共7页 材料科学技术(英文版)
基金 supported financially by the Innovation Team Project of Liaoning Province(No.LT2015020) the Special Professor Project in Liaoning Province.
关键词 SQUARE CRUCIBLE Short carbon fibers Aluminum matrix composite Mechanical STIRRING Multi-orientation DISPERSION Square crucible Short carbon fibers Aluminum matrix composite Mechanical stirring Multi-orientation dispersion
作者简介 Corresponding author:Yingdong Qu,E-mail address:quydong@sut.edu.cn(Y.Qu).
  • 相关文献

同被引文献58

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部