期刊文献+

机器人感知与交互技术课程教学方法探索 被引量:3

Teaching Method Exploration of Robot Perception and Interaction Technology Course
原文传递
导出
摘要 机器人感知与交互技术是机器人工程专业本科生的一门专业核心课,其教学质量的优劣对学生培养质量有着重要影响。该文介绍了课程的内容框架,分析了课程特点,并结合课程特点对该课程的教学方法提出几点思考。课程教学中应重视学生理论基础的构建,同时加强实践能力的锻炼。结合大学生创新项目、学科竞赛等环节,培养学生的创新能力和实践能力。鼓励学生查阅文献及网络学习资源,及时跟进学术及行业前沿动态。针对课程设置持续改进机制,不断改善教学效果。 Robot perception and interaction technology is a professional core course for undergraduates majoring in robotics.The teaching quality has a significant impact on the quality of student cultivation.This article introduces the content framework of the course,analyzes the characteristics of the course,and puts forward some thoughts on the teaching method of the course based on the characteristics.Attention should be paid to the construction of students’theoretical foundation and the training of practical ability.College students’innovation projects,discipline competitions and other extracurricular activities are utilized to assist in cultivating students’innovative and practical abilities.Students are encouraged to consult literature and online learning resources to follow up on academic and industry frontier developments timely.Improvement measures for the curriculum are set to continuously improve the teaching effect.
作者 李一锦 王晶 LI Yijin;WANG Jing(School of Mechanical Electronic and Information Engineering,China University of Mining&Technology,Beijing,100083,China)
出处 《创新创业理论研究与实践》 2022年第2期159-161,共3页 The Theory and Practice of Innovation and Enterpreneurship
基金 中国矿业大学(北京)2020年本科教改项目——机器人感知与交互技术课程建设(项目号:J200506) 国家自然科学基金资助项目(No.61901476)。
关键词 机器人感知与交互技术 新工科 教学方法 Robot perception and interaction technology New engineering Teaching method
作者简介 李一锦(1991-),女,吉林通化人,博士,讲师,研究方向:传感器原理与技术、智能感知。
  • 相关文献

参考文献6

二级参考文献100

  • 1Silver D, Huang A, Maddison C J, et al. Mastering the game of Go with deep neural networks and tree search. Nature, 2016, 529:484-489.
  • 2Roberts L. Machine perception of three-dimensional solids. In: Optical and Electron-optical Information Processing. Cambridge: MIT Press, 1965. 159-197.
  • 3Marr D. Vision: a Computational Investigation Into the Human Representation and Processing of Visual Information. Cambridge: MIT Press, 2010.
  • 4Jain R C, Binford T O. Ignorance, myopia, and naivete in computer vision systems. CVGIP: Image Und, 1991, 53: 112-117.
  • 5Brooks R A. Intelligence without reason. In: Proceedings of the 12th International Joint Conference on Artificial Intelligence, Sydney, 1991. 569-595.
  • 6Zhang Z. Microsoft Kinect sensor and its effect. IEEE Multimed, 2012, 19:4-10.
  • 7Shotton J, Sharp T, Kipman A, et al. Real-time human pose recognition in parts from single depth images. Commun ACM, 2013, 56:116-124.
  • 8Fankhauser P, Bloesch M, Rodriguez D, et al. Kinect v2 for mobile robot navigation: evaluation and modeling. In: Proceedings of the 17th International Conference on Advanced Robotics, Istanbul, 2015. 388-394.
  • 9Han J, Shao L, Xu D, et al. Enhanced computer vision with Microsoft Kinect sensor: a review. IEEE Trans Cyber, 2013, 43:1318-1334.
  • 10Leibe B, Schiele B. Analyzing appearance and contour based methods for object categorization. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Madison, 2003. 2:409-415.

共引文献78

同被引文献13

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部