期刊文献+

实时辨识锂离子电池参数并基于改进AEKF估算SOC 被引量:8

Real-time identification of lithium-ion battery parameters and estimation of SOC based on improved AEKF
在线阅读 下载PDF
导出
摘要 随着使用工况、衰退状况以及工作温度的改变,动力锂离子电池内部参数也会随之变化,因此基于模型估算电池荷电状态(SOC)的方法中模型参数是时变的。然而,由于采用离线的方式获取,传统的扩展卡尔曼滤波(EKF)算法中的模型参数却是不变的,由此导致随时间的推移SOC估算精度会下降。为了解决这一问题,建立带遗忘因子的递推最小二乘法来实时更新模型参数,联合改进的自适应扩展卡尔曼滤波(AEKF)算法进行SOC估算。使用混合脉冲功率特性(HPPC)测试数据对比该方法与传统EKF表现,结果表明该方法具有更高的精度,其相对误差小于1%,且对电池充放电的动态特性有更好的模拟效果。 With changes in operating conditions,decay conditions,and temperature,the internal parameters of the power lithium-ion battery will change accordingly,so the model parameters in the method of estimating the state of charge(SOC)based on the model should be time-varying.However,due to the offline method,the model parameters in the traditional extended Kalman filter(EKF)do not change with time,which will cause the accuracy of the SOC estimation to decrease over time.In order to solve this problem,a recursive least square method with forgetting factor is established to update the model parameters in real time,and the improved adaptive extended Kalman filter(AEKF)algorithm is used to estimate the SOC.Using hybrid pulse power characteristic(HPPC)test data to compare the performance of this method with traditional EKF,the results show that the method has higher accuracy.The relative error is less than 1%and it has better simulation effects on the dynamic characteristics of battery during charging and discharging.
作者 秦鹏 王振新 康健强 王菁 朱国荣 向馗 Qin Peng;Wang Zhenxin;Kang Jianqiang;Wang Jing;Zhu Guorong;Xiang Kui(Hubei Research Center for New Energy&Intelligent Connected Vehicle,Wuhan University of Technology,Wuhan 430070,China;School of Automation,Wuhan University of Technology,Wuhan 430070,China)
出处 《电子测量技术》 2020年第10期30-35,共6页 Electronic Measurement Technology
关键词 锂离子电池 自适应卡尔曼滤波 荷电状态 参数辨识 lithium-ion batteries adaptive extended Kalman filter state of charge parameter identification
作者简介 秦鹏,硕士,主要研究方向为新能源汽车电池管理系统、电池状态估计算法、电池性能测试等。E-mail:qincpeng@163.com
  • 相关文献

参考文献5

二级参考文献42

  • 1林成涛,陈全世,王军平,黄文华,王燕超.用改进的安时计量法估计电动汽车动力电池SOC[J].清华大学学报(自然科学版),2006,46(2):247-251. 被引量:97
  • 2夏超英,张术,孙宏涛.基于推广卡尔曼滤波算法的SOC估算策略[J].电源技术,2007,31(5):414-417. 被引量:54
  • 3BABA A, ADACHI S. State of charge estimation of HEV/EV battery with series kahnan filter [ C ]. SICE Annual Conference, Akita, Japan, 2012, Page (s): 845 -850.
  • 4HEZHW, LIUYY, GAO MY, et al. A joint model and SoC estimation method for lithium battery based on the sigma point KF[ C]. ITEC, 2012:1-5.
  • 5RAHIMI-EICHI H, BARONTI F, CHOW M Y. Online adaptive parameter identifi cation and state-of-charge coestimation for Lithium-polymer battery cells [ J ]. IEEE Transactions on Industrial Electronics, 2014, 61(4) : 2053-2061.
  • 6RAHIMI-EICHI H, CHOW M Y. Adaptive parameter i- dentification and state-of-charge estimation of lithium- ion batteries [ C ]. Proceedings of 38th Annu. Conf. IEEE Ind. Electron. Soc., Montreal, QC, Canada, 2012 : 4012-4017.
  • 7XU J, MI C C, CAO B G, et al. The state of charge es- timation of lithimn-ion batteries based on a proportional- integral observer[J]. IEEE Transactions on Vehicular Technology, 2014, 63 (4) : 1614-1621.
  • 8WANG Y B, FANG H ZH, SAHINOGLU Z, et al. A- daptive estimation of the state of charge for Lithium-ion batteries: nonlinear geometric observer approach [ J ]. IEEE Transactions on Control Systems Technology,2015, 23(3): 948-962.
  • 9BAE K C, CHOI S C, KIM J H, et al. LiFePO4 dy- namic battery modeling for battery simulator[ C]. 2014 IEEE International Conference on Industrial Technology (ICIT) , Busan, Korea ,2014: 354-358.
  • 10ZHANG H L, CHOW M Y. Comprehensive dynamic battery modeling for PHEV applications [ C ]. Proceed- ings of the IEEE Power and Energy Society General Meeting, Minneapolis, MN, 2010: 1-6.

共引文献74

同被引文献90

引证文献8

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部