期刊文献+

基于Euler-Maruyama法的微分方程数值解的收敛性研究 被引量:1

Study on Convergence of Numerical Solutions of Differential Equations Based on Euler-Maruyama Method
在线阅读 下载PDF
导出
摘要 随着时代的发展,自变量分段连续型微分方程(SEPCAs)越来越多地获得了人们的广泛关注,并且能够成功地将其应用到工学、理学、医学、生物学等诸多领域.为了探索SEPCAs对欧拉方法的强收敛性.利用微分方程求解的方式分别证明了在局部Lipschitz条件和p阶矩有界条件下、在局部Lipschitz条件和线性增长条件下、在局部Lipschitz条件(H_(1))和单调条件(H_(3))下Euler-Maruyama法对SEPCAs方程具有强收敛性,并通过算例分析证明了Euler-Maruyama法在不同步长下数值解的收敛情况. With the development of the times,independent variable piecewise continuous differential equations(sepcas)have attracted more and more attention,and can be successfully applied to many fields such as engineering,science,medicine,biology and so on.In order to explore the strong convergence of sepcas to Euler method.By solving differential equations,it is proved that the Euler Maruyama method has strong convergence for sepcas equations under local Lipschitz condition and bounded p-order moment condition,local Lipschitz condition and linear growth condition,local Lipschitz condition(H_(1))and monotone condition(H_(3)).The convergence of the numerical solution of Euler Maruyama method under asynchronous length is proved by numerical example analysis.
作者 宋丽雅 Song Liya(Changzhi Preschool Education College)
出处 《哈尔滨师范大学自然科学学报》 CAS 2022年第1期36-43,共8页 Natural Science Journal of Harbin Normal University
关键词 分段连续型随机微分方程 指数欧拉方法 强收敛 数值解 Piecewise continuous stochastic differential equation Exponential Euler method Strong convergence Numerical solution
  • 相关文献

参考文献7

二级参考文献48

  • 1王鹏飞,殷凤,蔺小林.求解非线性随机微分方程加权格式的收敛性[J].郑州大学学报(理学版),2009,41(3):9-11. 被引量:7
  • 2张丽娟.基于凯恩方法的6R机器人动力学建模与仿真[J].自动化与仪器仪表,2016(4):83-85. 被引量:3
  • 3朱霞.求解随机微分方程的欧拉法的收敛性[J].华中科技大学学报(自然科学版),2003,31(3):114-116. 被引量:17
  • 4范振成,刘明珠.随机延迟微分方程数值解的P阶矩指数稳定[J].黑龙江大学自然科学学报,2005,22(4):468-470. 被引量:3
  • 5Hanson F,Yan G. Option consumption and portfolio control for jump-diffusion stock process with log-normal jumps[A].2006.1-7.
  • 6Zhao G H,Song M H,Liu M Z. Numerical solutions of stochastic differential delay equations with jumps[J].Int J Numer Anal Model,2009,(04):659-679.
  • 7Chalmers G,Higham D J. Asymptotic stability of a jump-diffusionequat ionand its numericalapproximation[J].SIAM J Sci Comput,2008,(02):1141-1155.
  • 8Higham D J,Kloeden P E. Numerical methods for nonlinear stochastic delay differential equations with jumps[J].NUMERISCHE MATHEMATIK,2005,(01):101-119.
  • 9Higham D J,Kloeden P E. Convergence and stability of implicit methods for jump-diffusion systems[J].Int J Numer Anal Model,2006,(02):125-140.
  • 10Higham D J,Kloeden P E. Strong convergence rates for backward Euler on a class of nonlinear jump-diffusion problems[J].Journal of Computational and Applied Mathematics,2007,(02):949-956.

共引文献8

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部