期刊文献+

基于残差编解码网络的CT图像金属伪影校正 被引量:18

CT metal artifact reduction based on the residual encoder-decoder network
在线阅读 下载PDF
导出
摘要 金属伪影校正对提高CT图像清晰度具有重要意义。针对金属伪影校正研究中伪影消除不彻底、组织结构缺失等问题,提出一种基于残差编解码网络的金属伪影去除(RED-CNN-MAR)方法。首先,使用RED-CNN网络实现由金属伪影图像到无金属伪影图像的端到端映射,在卷积层之后引入BN层提高网络训练精度和加快收敛速度;并且将原始图像、线性插值(LI)图像、射束硬化校正(BHC)图像作为RED-CNN网络的三通道输入,以融合不同校正方法的优势。接着,对该网络的输出图像在投影域进一步做组织处理;最后利用滤波反投影重建得到校正后的无金属伪影图像。经实验分析,经过RED-CNN-MAR方法校正后的图像RMSE减小了0.000 7,PSNR和SSIM分别提高了0.59 dB、0.002 8。实验结果表明,该方法可以有效地抑制金属伪影,重建出清晰的结构细节。 Metal artifact reduction is of great significance to improve the clarity of CT images. In this domain, some problems include incomplete artifact removal and miss of organizational structure. To address these issues, proposes a method of metal artifact reduction based on the residual encoder-decoder network(RED-CNN-MAR). Firstly, the RED-CNN network is used to realize the end-to-end mapping from the metal artifact image to the metal artifact-free image. The BN layer is utilized after the convolutional layer to improve the training accuracy of the network. Meanwhile, the speed of convergence is enhanced. To integrate the advantages of different correction methods, the original image, linear-interpolation images and beam-hardingcorrection images are used as the three-channel input of the RED-CNN network. Secondly, the output image of the network is further processed in the projection domain. Finally, the corrected image without metal artifact is reconstructed by the filtering back projection algorithm. The RMSE of the image corrected by the RED-CNN-MAR method is reduced by 0.000 7. PSNR and SSIM are improved by 0.59 dB and 0.002 8, respectively. Experimental results show that the proposed method can effectively suppress metal artifactand reconstruct clear structural details.
作者 马燕 余海军 钟发生 刘丰林 Ma Yan;Yu Haijun;Zhong Fasheng;Liu Fenglin(Key Lab of Optoelectronic Technology and Systems,Ministry of Education,Chongqing University,Chongqing 400044,China;Engineering Research Center of Industrial Computer Tomography Nondestructive Testing,Ministry of Education,Chongqing University,Chongqing 400044,China;State Key Lab of Mechanical Transmission,Chongqing University,Chongqing 400044,China)
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2020年第8期160-169,共10页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(61471070) 国家重大仪器开发专项(2013YQ030629)资助
关键词 金属伪影校正 深度学习 残差网络 编解码器 metal artifact reduction deep learning residual network encoder-decoder
作者简介 马燕,2018年毕业于曲阜师范大学获得学士学位,现为重庆大学硕士研究生,主要研究方向为仪器科学与技术、金属伪影校正。E-mail:mayan@cqu.edu.cn;通信作者:刘丰林,分别在1990年、1993年和2009年于重庆大学获得学士学位、硕士学位、工学博士学位。现为重庆大学研究员、博士生导师,主要研究方向为工业CT技术与系统、机械电子技术。E-mail:liufl@cqu.edu.cn
  • 相关文献

参考文献5

二级参考文献42

  • 1Vanbang L E,朱煜,郑兵兵,杨达伟,任晓东,Thiminhchinh Ngo.图像灰度密度分布计算模型及肺结节良恶性分类[J].计算机应用研究,2020,37(1):296-299. 被引量:4
  • 2贠明凯,刘力.数字实时成像(DR)与X射线胶片成像对比分析[J].CT理论与应用研究(中英文),2005,14(3):13-17. 被引量:27
  • 3Anil K J. Data clustering:50 years beyond K-Means[J].Pattern Recognition Letters,2010,(08):651-666.
  • 4Likas A,Vlassis M,Verbeek J. The global K-means clustering algorithm[J].Pattern Recognition,2003,(02):451-461.doi:10.1016/S0031-3203(02)00060-2.
  • 5Selim S Z,Al-Sultan K S. Analysis of global K-means,an incremental heuristic for minimum sum-of-squares clustering[J].Journal of Classification,2005,(22):287-310.
  • 6Bellman R,Dreyfus S. Applied dynamic programming[M].Princeton,New Jersey:Princeton University Press,1962.
  • 7Aloise D,Deshpande A,Hansen P. NP-hardness of euclidean sum-of-squares clustering[J].Machine Learning,2009,(02):245-248.
  • 8Mahajan M,Nimbor P,Varadarajan K. The planar K-means problem is NP-hard[J].Lecture Notes in Computer Science,2009,(5431):274-285.
  • 9Ball G,Hall D. ISODATA,a novel method of data analysis and pattern classification[Technical rept. NTIS AD 699616. ][M].California:Stanford Research Institute,1965.
  • 10WANG Cheng,LI Jiao-jiao,BAI Jun-qing. Max-Min K- means Clustering Algorithm and Application in Post-processing of Scientific Computing[A].Napoli,2011.7-9.

共引文献404

同被引文献172

引证文献18

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部