(2E,6E)-4-methyl-2,6-bis(pyridin-3-ylmethylene)cyclohexan-1-one(L_(1))and 4-methyl-2,6-bis[(E)-4-(pyridin-4-yl)benzylidene]cyclohexan-1-one(L_(2))were synthesized and combined with isophthalic acid(H_(2)IP),then under...(2E,6E)-4-methyl-2,6-bis(pyridin-3-ylmethylene)cyclohexan-1-one(L_(1))and 4-methyl-2,6-bis[(E)-4-(pyridin-4-yl)benzylidene]cyclohexan-1-one(L_(2))were synthesized and combined with isophthalic acid(H_(2)IP),then under solvothermal conditions,to react with transition metals achieving four novel metal-organic frameworks(MOFs):[Zn(IP)(L_(1))]_(n)(1),{[Cd(IP)(L_(1))]·H_(2)O}_(n)(2),{[Co(IP)(L_(1))]·H_(2)O}_(n)(3),and[Zn(IP)(L_(2))(H_(2)O)]_(n)(4).MOFs 1-4 have been characterized by single-crystal X-ray diffraction,powder X-ray diffraction,thermogravimetry,and elemental analysis.Single-crystal X-ray diffraction shows that MOF 1 crystallizes in the monoclinic crystal system with space group P2_(1)/n,and MOFs 2-4 belong to the triclinic system with the P1 space group.1-3 are 2D sheet structures,2 and 3 have similar structural characters,whereas 4 is a 1D chain structure.Furthermore,1-3 exhibited certain photocatalytic capability in the degradation of rhodamine B(Rh B)and pararosaniline hydrochloride(PH).4could be used as a heterogeneous catalyst for the Knoevenagel reaction starting with benzaldehyde derivative and malononitrile.4 could promote the reaction to achieve corresponding products in moderate yields within 3 h.Moreover,the catalyst exhibited recyclability for up to three cycles without significantly dropping its activity.A mechanism for MOF 4 catalyzed Knoevenagel condensation reaction of aromatic aldehyde and malononitrile has been initially proposed.CCDC:2356488,1;2356497,2;2356499,3;2356498,4.展开更多
Graphdiyne(GDY)is a two-dimensional carbon allotrope with exceptional physical and chemical properties that is gaining increasing attention.However,its efficient and scalable synthesis remains a significant challenge....Graphdiyne(GDY)is a two-dimensional carbon allotrope with exceptional physical and chemical properties that is gaining increasing attention.However,its efficient and scalable synthesis remains a significant challenge.We present a microwave-assisted approach for its continuous,large-scale production which enables synthesis at a rate of 0.6 g/h,with a yield of up to 90%.The synthesized GDY nanosheets have an average diameter of 246 nm and a thickness of 4 nm.We used GDY as a stable coating for potassium(K)metal anodes(K@GDY),taking advantage of its unique molecular structure to provide favorable paths for K-ion transport.This modification significantly inhibited dendrite formation and improved the cycling stability of K metal batteries.Full-cells with perylene-3,4,9,10-tetracarboxylic dianhydride(PTCDA)cathodes showed the clear superiority of the K@GDY anodes over bare K anodes in terms of performance,stability,and cycle life.The K@GDY maintained a stable voltage plateau and gave an excellent capacity retention after 600 cycles with nearly 100%Coulombic efficiency.This work not only provides a scalable and efficient way for GDY synthesis but also opens new possibilities for its use in energy storage and other advanced technologies.展开更多
Two Gd_(2)complexes,namely[Gd_(2)(dbm)_(2)(HL_(1))_(2)(CH_(3)OH)_(2)]·4CH_(3)OH(1)and[Gd_(2)(dbm)_(2)(L_(2))_(2)(CH_(3)OH)_(2)]·2CH_(3)OH(2),where H_(3)L_(1)=(Z)-N'-[4-(diethylamino)-2-hydroxybenzylidene...Two Gd_(2)complexes,namely[Gd_(2)(dbm)_(2)(HL_(1))_(2)(CH_(3)OH)_(2)]·4CH_(3)OH(1)and[Gd_(2)(dbm)_(2)(L_(2))_(2)(CH_(3)OH)_(2)]·2CH_(3)OH(2),where H_(3)L_(1)=(Z)-N'-[4-(diethylamino)-2-hydroxybenzylidene]-2-hydroxyacetohydrazide,H_(2)L_(2)=(E)-N'-(5-bromo-2-hydroxy-3-methoxybenzylidene)nicotinohydrazide,Hdbm=dibenzoylmethane,have been constructed by adopting the solvothermal method.Structural characterization unveils that both complexes 1 and 2 are constituted by two Gd^(3+)ions,two dbm-ions,two CH_(3)OH molecules,and two polydentate Schiff-base ligands(HL_(1)^(2-)or L_(2)^(2-)).In addition,complex 1 contains four free methanol molecules,whereas complex 2 harbors two free methanol molecules.By investigating the interactions between complexes 1 and 2 and four types of bacteria(Bacillus subtilis,Escherichia coli,Staphylococcus aureus,Candida albicans),it was found that both complexes 1 and 2 exhibited potent antibacte-rial activities.The interaction mechanisms between the ligands H_(3)L_(1),H_(2)L_(2),complexes 1 and 2,and calf thymus DNA(CT-DNA)were studied using ultraviolet-visible spectroscopy,fluorescence titration,and cyclic voltammetry.The results demonstrated that both complexes 1 and 2 can intercalate into CT-DNA molecules,thereby inhibiting bacterial proliferation to achieve the antibacterial effects.CCDC:2401116,1;2401117,2.展开更多
Herein,a one-pot chemical reduction method was reported to prepare folic acid(FA)-stabilized silver nanoclusters(FA@Ag NCs),in which FA,hydrazine hydrate,and silver nitrate were used as capping agent,reducing agent,an...Herein,a one-pot chemical reduction method was reported to prepare folic acid(FA)-stabilized silver nanoclusters(FA@Ag NCs),in which FA,hydrazine hydrate,and silver nitrate were used as capping agent,reducing agent,and precursor,respectively.Several technologies were employed to investigate the structures and optical properties of FA@Ag NCs,including transmission electron microscopy(TEM),X-ray photoelectron spectrometer(XPS),Fourier transform infrared spectrometer(FTIR),X-ray diffractometer(XRD),fluorescence spectrometer,and ultraviolet visible absorption spectrometer.FA@Ag NCs were suggested to be highly dispersed and spherical with a size of around 2.8 nm.Moreover,the maximum excitation and emission wavelengths of FA@Ag NCs were 370 and 447 nm,respectively.Under the optimal detection conditions,FA@Ag NCs could be used to effectively detect malachite green with the linear detection range of 0.5-200μmol·L^(-1).The detection limit was 0.084μmol·L^(-1).The fluorescence-quenching mechanism was ascribed to the static quenching.The detection system based on FA@AgNCs was successfully used for the detection of malachite green in actual samples with good accuracy and reproducibility.展开更多
Adsorption as an effective technique for the remediation of wastewater has been widely used in industrial wastewater treatment due to the advantage of cost-effectiveness,availability of the adsorbent and ease of opera...Adsorption as an effective technique for the remediation of wastewater has been widely used in industrial wastewater treatment due to the advantage of cost-effectiveness,availability of the adsorbent and ease of operation.However,the low adsorption capacity of the reported adsorbents is still a challenge for wastewater treatment with highefficiency.Here,we developed a super adsorbent(SUA-1),which was a kind of porous carbon nanofibers derived from a composite of PAN-based electrospinning and ZIF-8(PAN/ZIF-8)via simple heat treatment process.The asprepared SUA showed an ultra-high adsorption capacity for adsorbing methyl blue(MB)at nearly three times its own weight,as high as 2998.18 mg/g.A series tests demonstrated that the pore-making effect of ZIF-8 during heat treatment process endowed high BET surface area and generated ZnO components as chemical adsorption center.Under the synergistic effect of bonding and non-bonding forces including ionic bond,electrostatic interaction,andπ-πinteraction,the adsorption capacity has been greatly improved.In view of promising efficiency,this work provides guidance and insights for the preparation of highly efficient adsorbents based on electrospinning derived porous carbon nanofibers.展开更多
A strategy for the green synthesis of heterocyclicβ-ketosulfides via nucleophilic substitution ofα-halogenated ketone with het-eroaryl thiols in water media is presented.Compared with the available literature report...A strategy for the green synthesis of heterocyclicβ-ketosulfides via nucleophilic substitution ofα-halogenated ketone with het-eroaryl thiols in water media is presented.Compared with the available literature reports,this new method had the advantages of base-free,additives-free,simple operation,mild condition,greenness,high efficiency,tolerance of a broad scope of substrates.Furth-more,the reaction could easily be scaled up in gram scale and the products also could easily transformed to other useful organic compounds.Mechanism investigation indicated that the tautomerism of pyrimidine-2-thiol to pyrimidine-2(1H)-thione and the hy-drogen bonds played important roles in the reaction.展开更多
An efficient copper-catalyzed regioselective acyloxy-trifluoromethylation of allenamides using Togni'sⅡreagent as the source of both the trifluoromethyl and acyloxy moieties was developed to create a workable rou...An efficient copper-catalyzed regioselective acyloxy-trifluoromethylation of allenamides using Togni'sⅡreagent as the source of both the trifluoromethyl and acyloxy moieties was developed to create a workable route to CF_(3)-substituted allylic esters.The reaction exhibited good functional group tolerance and high efficiency,affording the products in moderate to good yields.Mechanistic investigations indicated a radical process was likely involved in this transformation.展开更多
The electrocatalytic nitrogen oxidation reaction(NOR)is a sustainable approach for converting N_(2)to NO_(3)^(-)under mild conditions.However,it still faces challenges including inefficient N_(2)absorption/activation ...The electrocatalytic nitrogen oxidation reaction(NOR)is a sustainable approach for converting N_(2)to NO_(3)^(-)under mild conditions.However,it still faces challenges including inefficient N_(2)absorption/activation and oxygen evolution competition,sluggish kinetics,low Faradaic efficiency,and limited nitrate yields.In this work,a novel two-dimensional(2D)layered MOF Mn-BCPPy(H_(2)BCPPy=3,5-di(4'-carboxyphenyl)pyridine)has been successfully synthesized.The framework is composed of a rod-manganese motifs and possesses abundant active sites including open metal sites(OMSs)and Lewis base sites(LBSs).The Mn-BCPPy is the first MOF catalyst applied in electrocatalytic NOR which NO_(3)^(-)exhibited relatively high activity with a yield of 99.75μg/(h·mg)and a Faraday efficiency(FE)of 32.09%.Furthermore,it can be used as fluorescent sensor for selectively and sensitively detect nitrofuran antibiotics(NFs).Therefore,this work explores the application of MOF materials in the field of electrocatalytic NOR,which reveals that manganese-based MOFs have great potential prospects.展开更多
A trinuclear copper complex [Cu_(3)(L2)_(2)(SO_(4))_(2)(H_(2)O)_(7)]·8H_(2)O(1)(HL2=1-hydroxy-3-(pyrazin-2-yl)-N-(pyrazin-2-ylmethyl)imidazo[1,5-a]pyrazine-8-carboxamide) with a multi-substituted imidazo[1,5-a]py...A trinuclear copper complex [Cu_(3)(L2)_(2)(SO_(4))_(2)(H_(2)O)_(7)]·8H_(2)O(1)(HL2=1-hydroxy-3-(pyrazin-2-yl)-N-(pyrazin-2-ylmethyl)imidazo[1,5-a]pyrazine-8-carboxamide) with a multi-substituted imidazo[1,5-a]pyrazine scaffold was serendipitously prepared from the reaction of the pro-ligand of H_(2)L1(N,N'-bis(pyrazin-2-ylmethyl)pyrazine-2,3-dicarboxamide) with CuSO_(4)·5H_(2O) in aqueous solution at room temperature.Complex 1 was characterized by IR,single-crystal X-ray analysis,and magnetic susceptibility measurements.Single-crystal X-ray analysis reveals that the complex consists of three Cu(Ⅱ) ions,two in situ transformed L2~-ligands,two coordinated sulfates,seven coordinated water molecules,and eight uncoordinated water molecules.Magnetic susceptibility measurement indicates that there are obvious ferromagnetic coupling interactions between the adjacent Cu(Ⅱ) ions in 1.CCDC:1852713.展开更多
Three efficient methods for the synthesis of a series of Cu(Ⅱ) and Cu(Ⅰ) complexes based on imidazo[1,5-a]pyridine derivatives were developed.These methods include the following:(ⅰ)Cu(Ⅱ) salts were used as metal s...Three efficient methods for the synthesis of a series of Cu(Ⅱ) and Cu(Ⅰ) complexes based on imidazo[1,5-a]pyridine derivatives were developed.These methods include the following:(ⅰ)Cu(Ⅱ) salts were used as metal sources and N,N-dimethylformamide was employed as a solvent as well as a reductant to produce Cu(Ⅰ) complexes.(ⅱ) An iodide-containing compound was utilized as a ligand and iodide source to prepare complexes.An in situ metalligand reaction occurred and an iodide-bridged copper complex was generated.(ⅲ) A series of aldehydes were added to the reaction systems to induce in situ metal-ligand reactions between the aldehydes and the imidazo[1,5-a]pyridine derivatives,producing polydentate ligand scaffolds.Eight complexes were prepared and characterized.The catalytic activities of these complexes toward the ketalization of ketones by ethylene glycol were investigated.With the exception of complex4,the remaining seven complexes all showed high catalytic activity.The lower activity of 4 may be due to the larger radius of bridging iodide ions and the shorter Cu(Ⅰ)…Cu(Ⅰ) distance.CCDC:2357696,1·2CH_(2)Cl_(2);2357697,2;2018292,3;2092192,4;2092190,5;2155557,6;2406155,7;2406156,8·EtOH.展开更多
Herein,a luminescent europium-based metal-organic framework(Eu-MOF,[Eu_(3)(L)(HL)(NO_(3))_(2)(DMF)_(2)]·4DMF·5H_(2)O,H_(4)L=5,5′-(pyrazine-2,6-diyl)diisophthalic acid,DMF=N,N-dimethylformamide)was developed...Herein,a luminescent europium-based metal-organic framework(Eu-MOF,[Eu_(3)(L)(HL)(NO_(3))_(2)(DMF)_(2)]·4DMF·5H_(2)O,H_(4)L=5,5′-(pyrazine-2,6-diyl)diisophthalic acid,DMF=N,N-dimethylformamide)was developed for the dual-functional detection of environmental pollutants.This fluorescence-quenching-based sensor exhibited excep-tional sensitivity for both 2,4,6-trinitrophenol(TNP)and tetracycline(TC),achieving remarkably low detection lim-its of 1.96×10^(-6)and 1.71×10^(-7)mol·L^(-1),respectively.Notably,the system exhibited 99%fluorescence quenching ef-ficiency for TC,indicating ultra-efficient analyte recognition.The detection performance surpasses most reported lu-minescent MOF sensors,attributed to synergistic mechanisms of fluorescence resonance energy transfer(FRET)and photoinduced electron transfer(PET).CCDC:2446483.展开更多
The plasma membrane(PM)plays an essential role in maintaining cell homeostasis,therefore,timely and effective repair of damage caused by factors such as mechanical rupture,pore-forming toxins,or pore-forming proteins ...The plasma membrane(PM)plays an essential role in maintaining cell homeostasis,therefore,timely and effective repair of damage caused by factors such as mechanical rupture,pore-forming toxins,or pore-forming proteins is crucial for cell survival.PM damage induces membrane rupture and stimulates an immune response.However,damage resulting from regulated cell death processes,including pyroptosis,ferroptosis,and necroptosis,cannot be repaired by simple sealing mechanisms and thus,requires specialized repair machinery.Recent research has identified a PM repair mechanism of regulated cell death-related injury,mediated by the endosomal sorting complexes required for transport(ESCRT)machinery.Here,we review recent progress in elucidating the ESCRT machinery-mediated repair mechanism of PM injury,with particular focus on processes related to regulated cell death.This overview,along with continued research in this field,may provide novel insights into therapeutic targets for diseases associated with dysregulation of regulated cell death pathways.展开更多
Cp_(2)TiCl_(2) as a Lewis acid precursor and nicotinic acid as a ligand have been used synergistically for the one-pot synthesis of 2-(N-substituted amino)-1,4-naphthoquinones.This method establishes a general strateg...Cp_(2)TiCl_(2) as a Lewis acid precursor and nicotinic acid as a ligand have been used synergistically for the one-pot synthesis of 2-(N-substituted amino)-1,4-naphthoquinones.This method establishes a general strategy for the functionalization and conversion of C-H bonds of 1,4-naphthoquinones into C-N bonds,providing an effective route to synthesize 2-(N-substituted amino)-1,4-naphthoquinone with high yield under mild conditions.Additionally,the synergistic catalytic mechanism was investigated by 1H NMR titration experiments and LC-MS analysis,with experimental results sufficiently and consistently supporting the proposed mechanism of the catalytic cycle.展开更多
In recent years,photocatalytic N_(2) reduction for ammonia synthesis at room temperature and atmospheric pressure has gradually become a research hotspot,exhibiting extremely high development potential.However,the low...In recent years,photocatalytic N_(2) reduction for ammonia synthesis at room temperature and atmospheric pressure has gradually become a research hotspot,exhibiting extremely high development potential.However,the low photogenerated charge separation efficiency and the lack of effective active sites seriously constrain the reaction efficiencies of semiconductor photocatalysts for N_(2) reduction of ammonia synthesis.Therefore,the rational design of catalytic materials is the key to enhance the photocatalytic N_(2) reduction reaction of ammonia synthesis.Transition metal Ru as the active center not only accelerates the adsorption and activation of N_(2) molecules,but also has good selectivity for N_(2) reduction.Moreover,the interaction between the metal and the support can effectively regulate the electronic structure of the active site,accelerate the photogenerated electron transfer,and significantly enhance the photocatalytic activity.Based on this,this review systematically investigates the Ru co-semiconductors to realize efficient photocatalytic N_(2) reduction for ammonia synthesis,and introduces its basic principles.Specifically,the Ru co-semiconductor photocatalytic material systems are introduced,such as TiO2-based,g-C3N4-based,and metal oxide materials,including the design of catalysts,crystal structures,and other characteristics.In addition,the modification strategies of photocatalytic N_(2) reduction ammonia synthesis materials are also presented,including loading/doping,defect engineering,construction of heterojunctions,and crystal surface modulation.Furthermore,the progress and shortcomings of the application of Ru co-semiconductors in these processes are summarized and comprehensively discussed,and the future outlook of Ru co-semiconductors in photocatalytic N_(2) reduction ammonia synthesis applications is proposed.展开更多
A new adsorbent was successfully prepared by hydrothermal treatment and chemical activation through coal gasification fine slag(CGFS)and blue algae(BA)as raw materials and used for CO_(2)capture.The CO_(2)chemisorptio...A new adsorbent was successfully prepared by hydrothermal treatment and chemical activation through coal gasification fine slag(CGFS)and blue algae(BA)as raw materials and used for CO_(2)capture.The CO_(2)chemisorption capacity of the adsorbent was further enhanced by taking advantage of the nitrogenous bases contained in the BA.In the hydrothermal process,the addition of BA significantly increased the content of pyrrole nitrogen in the adsorbent.In the activation process,pyrrole nitrogen gradually changed into pyridine nitrogen and graphite nitrogen.Increased BA addition result in a higher specific surface area and microporosity of the adsorbent.The CO_(2)adsorption performance test proved that the CGFS-50%-CA sample has the strongest CO_(2)adsorption capacity at low temperature,up to 15.59 cm^(3)/g,which is mainly through physical adsorption,and the CGFS-10%-CA sample has the strongest CO_(2)adsorption capacity at high temperature,up to 7.31 cm^(3)/g,which is mainly through chemical adsorption.CO_(2)uptake of the CGFS-10%-CA sample was well maintained after 10 cycles,with regeneration efficiencies above 99%.The results indicate that the novel adsorbents with coexistence of physical and chemical adsorption have great potential for CO_(2)adsorption applications.展开更多
Two new complexes,[Zn_(2)(L1)(HL1)(NO_(3))]·CH_(3)OH(1)and[Zn_(3)(L2)(L3)_(3)Cl]·CH_(3)OH(2),were successfully synthesized by‘one-pot’method based on cinnoline-3-ylhydrazine ligand and zinc with 2-hydroxy-...Two new complexes,[Zn_(2)(L1)(HL1)(NO_(3))]·CH_(3)OH(1)and[Zn_(3)(L2)(L3)_(3)Cl]·CH_(3)OH(2),were successfully synthesized by‘one-pot’method based on cinnoline-3-ylhydrazine ligand and zinc with 2-hydroxy-4-methoxybenzaldehyde and 2-hydroxy-3-methoxybenzaldehyde ligands,respectively,where H_(2)L1=5-methoxy-2-(phthalazin-1-ylhydrazonomethyl)-phenol,H_(2)L2=2-methoxy-6-(phthalazin-1-yl-hydrazonomethyl)-phenol,HL3=2-(1,8-dihydro-[1,2,4]triazolo[3,4-α]phthalazin-3-yl)-6-methoxy-phenol.Complexes 1 and 2 were characterized by infrared spectroscopy,elemental analysis,single-crystal X-ray diffraction,powder X-ray diffraction,etc.It is worth noting that the cinnolin-3-yl-hydrazine ligand and 2-hydroxy-3-methoxybenzaldehyde form two types of Schiff bases(H_(2)L2 and HL3)when in situ reacting and coordinating with Zn(Ⅱ),and HL3 also has two coordination modes.In addition,the fluorescence performance showed that complex 1 can achieve selective and sensitive sensing of Al^(3+)in water with a detection limit of 6.37μmol·L^(-1).CCDC:2413978,1;2413979,2.展开更多
Novel green ceramic pigments Y_(3)Ga_(3)MgSiO_(12)∶xCr^(3+)(x=0−0.2)were successfully synthesized via the conventional solid-state approach.The properties of the pigments were studied by XRD,FE-SEM,UV-Vis spectroscop...Novel green ceramic pigments Y_(3)Ga_(3)MgSiO_(12)∶xCr^(3+)(x=0−0.2)were successfully synthesized via the conventional solid-state approach.The properties of the pigments were studied by XRD,FE-SEM,UV-Vis spectroscopy,XPS,and chromaticity analysis.The findings reveal that the trivalent chromium ions occupy the[Ga1O6]octahedral sites within the garnet lattice,and the relatively weak crystal field environment provided by the matrix endows the pigments with green characteristics.The samples prepared by calcination at 1400℃exhibit the most excellent performance in terms of phase purity,morphology,and color properties.The chromaticity values for the representative sample Y_(3)Ga_(3)MgSiO_(12)∶0.05Cr^(3+)are L^(*)=81.16,a^(*)=−12.53,and b^(*)=12.71,and the color remains stable after the stability test.Moreover,when glazed with Y_(3)Ga_(3)MgSiO_(12)∶xCr^(3+)(x=0−0.2)pigments,the smooth glaze surfaces exhibit vivid and saturated green tones,demonstrating their remarkable coloring capabilities and promising potential as a practical pigment for medium-temperature applications.This research underscores the vast application prospects of Y_(3)Ga_(3)MgSiO_(12)∶Cr^(3+)as an innovative green ceramic pigment.展开更多
Thermally activated delayed fluorescence(TADF)molecules have outstanding potential for applications in organic light-emitting diodes(OLEDs).Due to the lack of systematic studies on the correlation between molecular st...Thermally activated delayed fluorescence(TADF)molecules have outstanding potential for applications in organic light-emitting diodes(OLEDs).Due to the lack of systematic studies on the correlation between molecular structure and luminescence properties,TADF molecules are far from meeting the needs of practical applications in terms of variety and number.In this paper,three twisted TADF molecules are studied and their photophysical properties are theoretically predicted based on the thermal vibrational correlation function method combined with multiscale calculations.The results show that all the molecules exhibit fast reverse intersystem crossing(RISC)rates(kRISC),predicting their TADF luminescence properties.In addition,the binding of DHPAzSi as the donor unit with different acceptors can change the dihedral angle between the ground and excited states,and the planarity of the acceptors is positively correlated with the reorganization energy,a property that has a strong influence on the non-radiative process.Furthermore,a decrease in the energy of the molecular charge transfer state and an increase in the kRISC were observed in the films.This study not only provides a reliable explanation for the observed experimental results,but also offers valuable insights that can guide the design of future TADF molecules.展开更多
A novel coordination polymer(CP){[Cd_(2)(L)(1,4-bimb)_(1.5)(DMF)_(2)]·DMF}n(1)(H_(4)L=5,5'-[1,1'-biphenyl-4,4'-diylbis(oxy)]diisophthalic acid,1,4-bimb=1,4-bis(imidazole-1-ylmethyl)-benzene)has been d...A novel coordination polymer(CP){[Cd_(2)(L)(1,4-bimb)_(1.5)(DMF)_(2)]·DMF}n(1)(H_(4)L=5,5'-[1,1'-biphenyl-4,4'-diylbis(oxy)]diisophthalic acid,1,4-bimb=1,4-bis(imidazole-1-ylmethyl)-benzene)has been designed and synthesized through solvothermal reaction.Structural analysis shows that Cd(Ⅱ)is connected by H4L and 1,4-bimb to form a 2D network,and 1,4-bimb further expands the 2D network into a 3D framework.CP 1 can be used as an excellent fluorescence sensor for Fe^(3+)and 4-nitrophenol(4-NP),with low detection limits and good anti-interference.The detection limits of Fe^(3+)and 4-NP were 0.034 and 0.031μmol·L^(-1),respectively.In addition,the fluorescence quenching mechanism was studied.1 was successfully applied to determine Fe^(3+)and 4-NP content in the Yanhe River water sample.CCDC:2351092.展开更多
Manganese(Mn),an essential trace element in the human body,plays critical roles in many biological processes.Recent studies have discovered that Mn^(2+)may promote or directly activate the cGAS-STING pathway,thereby s...Manganese(Mn),an essential trace element in the human body,plays critical roles in many biological processes.Recent studies have discovered that Mn^(2+)may promote or directly activate the cGAS-STING pathway,thereby subsequently initiating the natural immune response and augmenting antitumor therapy.However,the current lack of accurate methods for Mn^(2+)determination in cells significantly limits their mechanism investigation;hence,it is urgent to establish novel tools to detect Mn^(2+)in cells.In this study,the dual-emission carbon dots were initially synthesized via the one-pot hydrothermal method employing L-aspartic acid and p-phenylenediamine as raw materials.In the presence of Mn^(2+),the emission peak centered at 350 nm exhibited significant enhancement,whereas another peak at 610 nm remained stable.Consequently,a ratiometric sensor for Mn^(2+)determination was established using the signal at 350 nm as the responsive signal and the signal at 610 nm as an internal reference.Under the optimal condition,a good linear relationship was achieved between the F350/F610 value and Mn^(2+)concentration ranging from 0.9 to 15μmol/L,with a calculated LOD of 61 nmol/L.Benefiting from the special Mn^(2+)-induced ratiometric approach,this method demonstrates outstanding sensitivity,selectivity,and stability,rendering it applicable for Mn^(2+)determination in complex biological samples,as well as Mn^(2+)imaging in MKN-45 and LO2 cells.展开更多
文摘(2E,6E)-4-methyl-2,6-bis(pyridin-3-ylmethylene)cyclohexan-1-one(L_(1))and 4-methyl-2,6-bis[(E)-4-(pyridin-4-yl)benzylidene]cyclohexan-1-one(L_(2))were synthesized and combined with isophthalic acid(H_(2)IP),then under solvothermal conditions,to react with transition metals achieving four novel metal-organic frameworks(MOFs):[Zn(IP)(L_(1))]_(n)(1),{[Cd(IP)(L_(1))]·H_(2)O}_(n)(2),{[Co(IP)(L_(1))]·H_(2)O}_(n)(3),and[Zn(IP)(L_(2))(H_(2)O)]_(n)(4).MOFs 1-4 have been characterized by single-crystal X-ray diffraction,powder X-ray diffraction,thermogravimetry,and elemental analysis.Single-crystal X-ray diffraction shows that MOF 1 crystallizes in the monoclinic crystal system with space group P2_(1)/n,and MOFs 2-4 belong to the triclinic system with the P1 space group.1-3 are 2D sheet structures,2 and 3 have similar structural characters,whereas 4 is a 1D chain structure.Furthermore,1-3 exhibited certain photocatalytic capability in the degradation of rhodamine B(Rh B)and pararosaniline hydrochloride(PH).4could be used as a heterogeneous catalyst for the Knoevenagel reaction starting with benzaldehyde derivative and malononitrile.4 could promote the reaction to achieve corresponding products in moderate yields within 3 h.Moreover,the catalyst exhibited recyclability for up to three cycles without significantly dropping its activity.A mechanism for MOF 4 catalyzed Knoevenagel condensation reaction of aromatic aldehyde and malononitrile has been initially proposed.CCDC:2356488,1;2356497,2;2356499,3;2356498,4.
基金supported by National Natural Science Foundation of China(52302034,52402060,52202201,52021006)Beijing National Laboratory for Molecular Sciences(BNLMS-CXTD202001)+1 种基金Shenzhen Science and Technology Innovation Commission(KQTD20221101115627004)China Postdoctoral Science Foundation(2024T170972)。
文摘Graphdiyne(GDY)is a two-dimensional carbon allotrope with exceptional physical and chemical properties that is gaining increasing attention.However,its efficient and scalable synthesis remains a significant challenge.We present a microwave-assisted approach for its continuous,large-scale production which enables synthesis at a rate of 0.6 g/h,with a yield of up to 90%.The synthesized GDY nanosheets have an average diameter of 246 nm and a thickness of 4 nm.We used GDY as a stable coating for potassium(K)metal anodes(K@GDY),taking advantage of its unique molecular structure to provide favorable paths for K-ion transport.This modification significantly inhibited dendrite formation and improved the cycling stability of K metal batteries.Full-cells with perylene-3,4,9,10-tetracarboxylic dianhydride(PTCDA)cathodes showed the clear superiority of the K@GDY anodes over bare K anodes in terms of performance,stability,and cycle life.The K@GDY maintained a stable voltage plateau and gave an excellent capacity retention after 600 cycles with nearly 100%Coulombic efficiency.This work not only provides a scalable and efficient way for GDY synthesis but also opens new possibilities for its use in energy storage and other advanced technologies.
文摘Two Gd_(2)complexes,namely[Gd_(2)(dbm)_(2)(HL_(1))_(2)(CH_(3)OH)_(2)]·4CH_(3)OH(1)and[Gd_(2)(dbm)_(2)(L_(2))_(2)(CH_(3)OH)_(2)]·2CH_(3)OH(2),where H_(3)L_(1)=(Z)-N'-[4-(diethylamino)-2-hydroxybenzylidene]-2-hydroxyacetohydrazide,H_(2)L_(2)=(E)-N'-(5-bromo-2-hydroxy-3-methoxybenzylidene)nicotinohydrazide,Hdbm=dibenzoylmethane,have been constructed by adopting the solvothermal method.Structural characterization unveils that both complexes 1 and 2 are constituted by two Gd^(3+)ions,two dbm-ions,two CH_(3)OH molecules,and two polydentate Schiff-base ligands(HL_(1)^(2-)or L_(2)^(2-)).In addition,complex 1 contains four free methanol molecules,whereas complex 2 harbors two free methanol molecules.By investigating the interactions between complexes 1 and 2 and four types of bacteria(Bacillus subtilis,Escherichia coli,Staphylococcus aureus,Candida albicans),it was found that both complexes 1 and 2 exhibited potent antibacte-rial activities.The interaction mechanisms between the ligands H_(3)L_(1),H_(2)L_(2),complexes 1 and 2,and calf thymus DNA(CT-DNA)were studied using ultraviolet-visible spectroscopy,fluorescence titration,and cyclic voltammetry.The results demonstrated that both complexes 1 and 2 can intercalate into CT-DNA molecules,thereby inhibiting bacterial proliferation to achieve the antibacterial effects.CCDC:2401116,1;2401117,2.
文摘Herein,a one-pot chemical reduction method was reported to prepare folic acid(FA)-stabilized silver nanoclusters(FA@Ag NCs),in which FA,hydrazine hydrate,and silver nitrate were used as capping agent,reducing agent,and precursor,respectively.Several technologies were employed to investigate the structures and optical properties of FA@Ag NCs,including transmission electron microscopy(TEM),X-ray photoelectron spectrometer(XPS),Fourier transform infrared spectrometer(FTIR),X-ray diffractometer(XRD),fluorescence spectrometer,and ultraviolet visible absorption spectrometer.FA@Ag NCs were suggested to be highly dispersed and spherical with a size of around 2.8 nm.Moreover,the maximum excitation and emission wavelengths of FA@Ag NCs were 370 and 447 nm,respectively.Under the optimal detection conditions,FA@Ag NCs could be used to effectively detect malachite green with the linear detection range of 0.5-200μmol·L^(-1).The detection limit was 0.084μmol·L^(-1).The fluorescence-quenching mechanism was ascribed to the static quenching.The detection system based on FA@AgNCs was successfully used for the detection of malachite green in actual samples with good accuracy and reproducibility.
基金Natural Science Foundation of China(22134005,22204011)Chongqing Talents Program for Outstanding Scientists(cstc2021ycjh-bgzxm0179)。
文摘Adsorption as an effective technique for the remediation of wastewater has been widely used in industrial wastewater treatment due to the advantage of cost-effectiveness,availability of the adsorbent and ease of operation.However,the low adsorption capacity of the reported adsorbents is still a challenge for wastewater treatment with highefficiency.Here,we developed a super adsorbent(SUA-1),which was a kind of porous carbon nanofibers derived from a composite of PAN-based electrospinning and ZIF-8(PAN/ZIF-8)via simple heat treatment process.The asprepared SUA showed an ultra-high adsorption capacity for adsorbing methyl blue(MB)at nearly three times its own weight,as high as 2998.18 mg/g.A series tests demonstrated that the pore-making effect of ZIF-8 during heat treatment process endowed high BET surface area and generated ZnO components as chemical adsorption center.Under the synergistic effect of bonding and non-bonding forces including ionic bond,electrostatic interaction,andπ-πinteraction,the adsorption capacity has been greatly improved.In view of promising efficiency,this work provides guidance and insights for the preparation of highly efficient adsorbents based on electrospinning derived porous carbon nanofibers.
文摘A strategy for the green synthesis of heterocyclicβ-ketosulfides via nucleophilic substitution ofα-halogenated ketone with het-eroaryl thiols in water media is presented.Compared with the available literature reports,this new method had the advantages of base-free,additives-free,simple operation,mild condition,greenness,high efficiency,tolerance of a broad scope of substrates.Furth-more,the reaction could easily be scaled up in gram scale and the products also could easily transformed to other useful organic compounds.Mechanism investigation indicated that the tautomerism of pyrimidine-2-thiol to pyrimidine-2(1H)-thione and the hy-drogen bonds played important roles in the reaction.
文摘An efficient copper-catalyzed regioselective acyloxy-trifluoromethylation of allenamides using Togni'sⅡreagent as the source of both the trifluoromethyl and acyloxy moieties was developed to create a workable route to CF_(3)-substituted allylic esters.The reaction exhibited good functional group tolerance and high efficiency,affording the products in moderate to good yields.Mechanistic investigations indicated a radical process was likely involved in this transformation.
基金supported by Natural Science Foundation of Shandong Province(ZR2021MB075)Fundamental Research Funds for the Central Universities,Ocean University of China(202461021).
文摘The electrocatalytic nitrogen oxidation reaction(NOR)is a sustainable approach for converting N_(2)to NO_(3)^(-)under mild conditions.However,it still faces challenges including inefficient N_(2)absorption/activation and oxygen evolution competition,sluggish kinetics,low Faradaic efficiency,and limited nitrate yields.In this work,a novel two-dimensional(2D)layered MOF Mn-BCPPy(H_(2)BCPPy=3,5-di(4'-carboxyphenyl)pyridine)has been successfully synthesized.The framework is composed of a rod-manganese motifs and possesses abundant active sites including open metal sites(OMSs)and Lewis base sites(LBSs).The Mn-BCPPy is the first MOF catalyst applied in electrocatalytic NOR which NO_(3)^(-)exhibited relatively high activity with a yield of 99.75μg/(h·mg)and a Faraday efficiency(FE)of 32.09%.Furthermore,it can be used as fluorescent sensor for selectively and sensitively detect nitrofuran antibiotics(NFs).Therefore,this work explores the application of MOF materials in the field of electrocatalytic NOR,which reveals that manganese-based MOFs have great potential prospects.
文摘A trinuclear copper complex [Cu_(3)(L2)_(2)(SO_(4))_(2)(H_(2)O)_(7)]·8H_(2)O(1)(HL2=1-hydroxy-3-(pyrazin-2-yl)-N-(pyrazin-2-ylmethyl)imidazo[1,5-a]pyrazine-8-carboxamide) with a multi-substituted imidazo[1,5-a]pyrazine scaffold was serendipitously prepared from the reaction of the pro-ligand of H_(2)L1(N,N'-bis(pyrazin-2-ylmethyl)pyrazine-2,3-dicarboxamide) with CuSO_(4)·5H_(2O) in aqueous solution at room temperature.Complex 1 was characterized by IR,single-crystal X-ray analysis,and magnetic susceptibility measurements.Single-crystal X-ray analysis reveals that the complex consists of three Cu(Ⅱ) ions,two in situ transformed L2~-ligands,two coordinated sulfates,seven coordinated water molecules,and eight uncoordinated water molecules.Magnetic susceptibility measurement indicates that there are obvious ferromagnetic coupling interactions between the adjacent Cu(Ⅱ) ions in 1.CCDC:1852713.
文摘Three efficient methods for the synthesis of a series of Cu(Ⅱ) and Cu(Ⅰ) complexes based on imidazo[1,5-a]pyridine derivatives were developed.These methods include the following:(ⅰ)Cu(Ⅱ) salts were used as metal sources and N,N-dimethylformamide was employed as a solvent as well as a reductant to produce Cu(Ⅰ) complexes.(ⅱ) An iodide-containing compound was utilized as a ligand and iodide source to prepare complexes.An in situ metalligand reaction occurred and an iodide-bridged copper complex was generated.(ⅲ) A series of aldehydes were added to the reaction systems to induce in situ metal-ligand reactions between the aldehydes and the imidazo[1,5-a]pyridine derivatives,producing polydentate ligand scaffolds.Eight complexes were prepared and characterized.The catalytic activities of these complexes toward the ketalization of ketones by ethylene glycol were investigated.With the exception of complex4,the remaining seven complexes all showed high catalytic activity.The lower activity of 4 may be due to the larger radius of bridging iodide ions and the shorter Cu(Ⅰ)…Cu(Ⅰ) distance.CCDC:2357696,1·2CH_(2)Cl_(2);2357697,2;2018292,3;2092192,4;2092190,5;2155557,6;2406155,7;2406156,8·EtOH.
文摘Herein,a luminescent europium-based metal-organic framework(Eu-MOF,[Eu_(3)(L)(HL)(NO_(3))_(2)(DMF)_(2)]·4DMF·5H_(2)O,H_(4)L=5,5′-(pyrazine-2,6-diyl)diisophthalic acid,DMF=N,N-dimethylformamide)was developed for the dual-functional detection of environmental pollutants.This fluorescence-quenching-based sensor exhibited excep-tional sensitivity for both 2,4,6-trinitrophenol(TNP)and tetracycline(TC),achieving remarkably low detection lim-its of 1.96×10^(-6)and 1.71×10^(-7)mol·L^(-1),respectively.Notably,the system exhibited 99%fluorescence quenching ef-ficiency for TC,indicating ultra-efficient analyte recognition.The detection performance surpasses most reported lu-minescent MOF sensors,attributed to synergistic mechanisms of fluorescence resonance energy transfer(FRET)and photoinduced electron transfer(PET).CCDC:2446483.
文摘The plasma membrane(PM)plays an essential role in maintaining cell homeostasis,therefore,timely and effective repair of damage caused by factors such as mechanical rupture,pore-forming toxins,or pore-forming proteins is crucial for cell survival.PM damage induces membrane rupture and stimulates an immune response.However,damage resulting from regulated cell death processes,including pyroptosis,ferroptosis,and necroptosis,cannot be repaired by simple sealing mechanisms and thus,requires specialized repair machinery.Recent research has identified a PM repair mechanism of regulated cell death-related injury,mediated by the endosomal sorting complexes required for transport(ESCRT)machinery.Here,we review recent progress in elucidating the ESCRT machinery-mediated repair mechanism of PM injury,with particular focus on processes related to regulated cell death.This overview,along with continued research in this field,may provide novel insights into therapeutic targets for diseases associated with dysregulation of regulated cell death pathways.
基金2024 Special Talent Introduction Projects of Key R&D Program of Ningxia Hui Autonomous Region(2024BEH04049)the 2024 Guyuan City Innovation-Driven Achievement Transformation Project(2024BGTYF01-47)2025 Ningxia Natural Science Foundation Program(2025AAC030624).
文摘Cp_(2)TiCl_(2) as a Lewis acid precursor and nicotinic acid as a ligand have been used synergistically for the one-pot synthesis of 2-(N-substituted amino)-1,4-naphthoquinones.This method establishes a general strategy for the functionalization and conversion of C-H bonds of 1,4-naphthoquinones into C-N bonds,providing an effective route to synthesize 2-(N-substituted amino)-1,4-naphthoquinone with high yield under mild conditions.Additionally,the synergistic catalytic mechanism was investigated by 1H NMR titration experiments and LC-MS analysis,with experimental results sufficiently and consistently supporting the proposed mechanism of the catalytic cycle.
基金supported by Taishan Scholars Foundation of Shandong province(tsqn 201909058)。
文摘In recent years,photocatalytic N_(2) reduction for ammonia synthesis at room temperature and atmospheric pressure has gradually become a research hotspot,exhibiting extremely high development potential.However,the low photogenerated charge separation efficiency and the lack of effective active sites seriously constrain the reaction efficiencies of semiconductor photocatalysts for N_(2) reduction of ammonia synthesis.Therefore,the rational design of catalytic materials is the key to enhance the photocatalytic N_(2) reduction reaction of ammonia synthesis.Transition metal Ru as the active center not only accelerates the adsorption and activation of N_(2) molecules,but also has good selectivity for N_(2) reduction.Moreover,the interaction between the metal and the support can effectively regulate the electronic structure of the active site,accelerate the photogenerated electron transfer,and significantly enhance the photocatalytic activity.Based on this,this review systematically investigates the Ru co-semiconductors to realize efficient photocatalytic N_(2) reduction for ammonia synthesis,and introduces its basic principles.Specifically,the Ru co-semiconductor photocatalytic material systems are introduced,such as TiO2-based,g-C3N4-based,and metal oxide materials,including the design of catalysts,crystal structures,and other characteristics.In addition,the modification strategies of photocatalytic N_(2) reduction ammonia synthesis materials are also presented,including loading/doping,defect engineering,construction of heterojunctions,and crystal surface modulation.Furthermore,the progress and shortcomings of the application of Ru co-semiconductors in these processes are summarized and comprehensively discussed,and the future outlook of Ru co-semiconductors in photocatalytic N_(2) reduction ammonia synthesis applications is proposed.
基金supported by the National Natural Science Foundation of China(22168032)the National Key Research and Development Program of China(2023YFC3904302,2023YFB4103500)the Key Projects of Ning Dong Energy and Chemical Industry Base(2023NDKJXMLX022).
文摘A new adsorbent was successfully prepared by hydrothermal treatment and chemical activation through coal gasification fine slag(CGFS)and blue algae(BA)as raw materials and used for CO_(2)capture.The CO_(2)chemisorption capacity of the adsorbent was further enhanced by taking advantage of the nitrogenous bases contained in the BA.In the hydrothermal process,the addition of BA significantly increased the content of pyrrole nitrogen in the adsorbent.In the activation process,pyrrole nitrogen gradually changed into pyridine nitrogen and graphite nitrogen.Increased BA addition result in a higher specific surface area and microporosity of the adsorbent.The CO_(2)adsorption performance test proved that the CGFS-50%-CA sample has the strongest CO_(2)adsorption capacity at low temperature,up to 15.59 cm^(3)/g,which is mainly through physical adsorption,and the CGFS-10%-CA sample has the strongest CO_(2)adsorption capacity at high temperature,up to 7.31 cm^(3)/g,which is mainly through chemical adsorption.CO_(2)uptake of the CGFS-10%-CA sample was well maintained after 10 cycles,with regeneration efficiencies above 99%.The results indicate that the novel adsorbents with coexistence of physical and chemical adsorption have great potential for CO_(2)adsorption applications.
文摘Two new complexes,[Zn_(2)(L1)(HL1)(NO_(3))]·CH_(3)OH(1)and[Zn_(3)(L2)(L3)_(3)Cl]·CH_(3)OH(2),were successfully synthesized by‘one-pot’method based on cinnoline-3-ylhydrazine ligand and zinc with 2-hydroxy-4-methoxybenzaldehyde and 2-hydroxy-3-methoxybenzaldehyde ligands,respectively,where H_(2)L1=5-methoxy-2-(phthalazin-1-ylhydrazonomethyl)-phenol,H_(2)L2=2-methoxy-6-(phthalazin-1-yl-hydrazonomethyl)-phenol,HL3=2-(1,8-dihydro-[1,2,4]triazolo[3,4-α]phthalazin-3-yl)-6-methoxy-phenol.Complexes 1 and 2 were characterized by infrared spectroscopy,elemental analysis,single-crystal X-ray diffraction,powder X-ray diffraction,etc.It is worth noting that the cinnolin-3-yl-hydrazine ligand and 2-hydroxy-3-methoxybenzaldehyde form two types of Schiff bases(H_(2)L2 and HL3)when in situ reacting and coordinating with Zn(Ⅱ),and HL3 also has two coordination modes.In addition,the fluorescence performance showed that complex 1 can achieve selective and sensitive sensing of Al^(3+)in water with a detection limit of 6.37μmol·L^(-1).CCDC:2413978,1;2413979,2.
文摘Novel green ceramic pigments Y_(3)Ga_(3)MgSiO_(12)∶xCr^(3+)(x=0−0.2)were successfully synthesized via the conventional solid-state approach.The properties of the pigments were studied by XRD,FE-SEM,UV-Vis spectroscopy,XPS,and chromaticity analysis.The findings reveal that the trivalent chromium ions occupy the[Ga1O6]octahedral sites within the garnet lattice,and the relatively weak crystal field environment provided by the matrix endows the pigments with green characteristics.The samples prepared by calcination at 1400℃exhibit the most excellent performance in terms of phase purity,morphology,and color properties.The chromaticity values for the representative sample Y_(3)Ga_(3)MgSiO_(12)∶0.05Cr^(3+)are L^(*)=81.16,a^(*)=−12.53,and b^(*)=12.71,and the color remains stable after the stability test.Moreover,when glazed with Y_(3)Ga_(3)MgSiO_(12)∶xCr^(3+)(x=0−0.2)pigments,the smooth glaze surfaces exhibit vivid and saturated green tones,demonstrating their remarkable coloring capabilities and promising potential as a practical pigment for medium-temperature applications.This research underscores the vast application prospects of Y_(3)Ga_(3)MgSiO_(12)∶Cr^(3+)as an innovative green ceramic pigment.
文摘Thermally activated delayed fluorescence(TADF)molecules have outstanding potential for applications in organic light-emitting diodes(OLEDs).Due to the lack of systematic studies on the correlation between molecular structure and luminescence properties,TADF molecules are far from meeting the needs of practical applications in terms of variety and number.In this paper,three twisted TADF molecules are studied and their photophysical properties are theoretically predicted based on the thermal vibrational correlation function method combined with multiscale calculations.The results show that all the molecules exhibit fast reverse intersystem crossing(RISC)rates(kRISC),predicting their TADF luminescence properties.In addition,the binding of DHPAzSi as the donor unit with different acceptors can change the dihedral angle between the ground and excited states,and the planarity of the acceptors is positively correlated with the reorganization energy,a property that has a strong influence on the non-radiative process.Furthermore,a decrease in the energy of the molecular charge transfer state and an increase in the kRISC were observed in the films.This study not only provides a reliable explanation for the observed experimental results,but also offers valuable insights that can guide the design of future TADF molecules.
文摘A novel coordination polymer(CP){[Cd_(2)(L)(1,4-bimb)_(1.5)(DMF)_(2)]·DMF}n(1)(H_(4)L=5,5'-[1,1'-biphenyl-4,4'-diylbis(oxy)]diisophthalic acid,1,4-bimb=1,4-bis(imidazole-1-ylmethyl)-benzene)has been designed and synthesized through solvothermal reaction.Structural analysis shows that Cd(Ⅱ)is connected by H4L and 1,4-bimb to form a 2D network,and 1,4-bimb further expands the 2D network into a 3D framework.CP 1 can be used as an excellent fluorescence sensor for Fe^(3+)and 4-nitrophenol(4-NP),with low detection limits and good anti-interference.The detection limits of Fe^(3+)and 4-NP were 0.034 and 0.031μmol·L^(-1),respectively.In addition,the fluorescence quenching mechanism was studied.1 was successfully applied to determine Fe^(3+)and 4-NP content in the Yanhe River water sample.CCDC:2351092.
基金Supported by National Natural Science Foundation of China(22264023)Natural Science Foundation of Shaanxi Province(2024JC-YBQN-0150)+2 种基金Yan'an Science and Technology Bureau Project(2023-SFGG-057)Scientific Research Projects of Education Department of Shaanxi Province(22JK0614)PhD Start Fund of Yan'an University(YDBK2022-15)。
文摘Manganese(Mn),an essential trace element in the human body,plays critical roles in many biological processes.Recent studies have discovered that Mn^(2+)may promote or directly activate the cGAS-STING pathway,thereby subsequently initiating the natural immune response and augmenting antitumor therapy.However,the current lack of accurate methods for Mn^(2+)determination in cells significantly limits their mechanism investigation;hence,it is urgent to establish novel tools to detect Mn^(2+)in cells.In this study,the dual-emission carbon dots were initially synthesized via the one-pot hydrothermal method employing L-aspartic acid and p-phenylenediamine as raw materials.In the presence of Mn^(2+),the emission peak centered at 350 nm exhibited significant enhancement,whereas another peak at 610 nm remained stable.Consequently,a ratiometric sensor for Mn^(2+)determination was established using the signal at 350 nm as the responsive signal and the signal at 610 nm as an internal reference.Under the optimal condition,a good linear relationship was achieved between the F350/F610 value and Mn^(2+)concentration ranging from 0.9 to 15μmol/L,with a calculated LOD of 61 nmol/L.Benefiting from the special Mn^(2+)-induced ratiometric approach,this method demonstrates outstanding sensitivity,selectivity,and stability,rendering it applicable for Mn^(2+)determination in complex biological samples,as well as Mn^(2+)imaging in MKN-45 and LO2 cells.