Pb(Zr,Ti)O_(3)-Pb(Zn_(1/3)Nb_(2/3))O_(3) (PZT-PZN) based ceramics, as important piezoelectric materials, have a wide range of applications in fields such as sensors and actuators, thus the optimization of their piezoe...Pb(Zr,Ti)O_(3)-Pb(Zn_(1/3)Nb_(2/3))O_(3) (PZT-PZN) based ceramics, as important piezoelectric materials, have a wide range of applications in fields such as sensors and actuators, thus the optimization of their piezoelectric properties has been a hot research topic. This study investigated the effects of phase boundary engineering and domain engineering on (1-x)[0.8Pb(Zr_(0.5)Ti_(0.5))O_(3)-0.2Pb(Zn_(1/3)Nb_(2/3))O_(3)]-xBi(Zn_(0.5)Ti_(0.5))O_(3) ((1-x)(0.8PZT-0.2PZN)- xBZT) ceramic to obtain excellent piezoelectric properties. The crystal phase structure and microstructure of ceramic samples were characterized. The results showed that all samples had a pure perovskite structure, and the addition of BZT gradually increased the grain size. The addition of BZT caused a phase transition in ceramic samples from the morphotropic phase boundary (MPB) towards the tetragonal phase region, which is crucial for optimizing piezoelectric properties. By adjusting content of BZT and precisely controlling position of the phase boundary, the piezoelectric performance can be optimized. Domain structure is one of the key factors affecting piezoelectric performance. By using domain engineering techniques to optimize grain size and domain size, piezoelectric properties of ceramic samples have been significantly improved. Specifically, excellent piezoelectric properties (piezoelectric constant d_(33)=320 pC/N, electromechanical coupling factor kp=0.44) were obtained simultaneously for x=0.08. Based on experimental results and theoretical analysis, influence mechanisms of phase boundary engineering and domain engineering on piezoelectric properties were explored. The study shows that addition of BZT not only promotes grain growth, but also optimizes the domain structure, enabling the polarization reversal process easier, thereby improving piezoelectric properties. These research results not only provide new ideas for the design of high-performance piezoelectric ceramics, but also lay a theoretical foundation for development of related electronic devices.展开更多
LiNi_(0.5)Mn_(1.5)O_4(LNMO) was prepared by a high-temperature solid phase method,and then Al PO_(4)(AP) was coated on the polyhedral LNMO surface by the wet chemical method.The experimental results showed that the LN...LiNi_(0.5)Mn_(1.5)O_4(LNMO) was prepared by a high-temperature solid phase method,and then Al PO_(4)(AP) was coated on the polyhedral LNMO surface by the wet chemical method.The experimental results showed that the LNMO-1%AP|Li cell prepared with a 1%mass ratio of Al PO_(4and) LNMO had better electrochemical performance;after 450 cycles at 1C,its discharge specific capacity maintained 108.78 m Ah·g^(-1),while that of the LNMO|Li cell was only 86.04 m Ah·g^(-1).Especially at the high rates of 5C and 10C,the electrochemical properties of the former were far superior to the latter.This was attributed to the fact that the AP coating made the surface of LNMO in contact with the electrolyte more stable,effectively promoted the Li~+transport,and reduced the polarization voltage of the electrode.展开更多
Graphdiyne(GDY)is a two-dimensional carbon allotrope with exceptional physical and chemical properties that is gaining increasing attention.However,its efficient and scalable synthesis remains a significant challenge....Graphdiyne(GDY)is a two-dimensional carbon allotrope with exceptional physical and chemical properties that is gaining increasing attention.However,its efficient and scalable synthesis remains a significant challenge.We present a microwave-assisted approach for its continuous,large-scale production which enables synthesis at a rate of 0.6 g/h,with a yield of up to 90%.The synthesized GDY nanosheets have an average diameter of 246 nm and a thickness of 4 nm.We used GDY as a stable coating for potassium(K)metal anodes(K@GDY),taking advantage of its unique molecular structure to provide favorable paths for K-ion transport.This modification significantly inhibited dendrite formation and improved the cycling stability of K metal batteries.Full-cells with perylene-3,4,9,10-tetracarboxylic dianhydride(PTCDA)cathodes showed the clear superiority of the K@GDY anodes over bare K anodes in terms of performance,stability,and cycle life.The K@GDY maintained a stable voltage plateau and gave an excellent capacity retention after 600 cycles with nearly 100%Coulombic efficiency.This work not only provides a scalable and efficient way for GDY synthesis but also opens new possibilities for its use in energy storage and other advanced technologies.展开更多
The liquid ion exchange method, solid salt melt method and dry-wet circulation method were used to prepare natural porous antimicrobial materials with natural minerals, such as zeolite, spilite, palygorskite and montm...The liquid ion exchange method, solid salt melt method and dry-wet circulation method were used to prepare natural porous antimicrobial materials with natural minerals, such as zeolite, spilite, palygorskite and montmorillonite, respectively. Atomic absorption spectrum and X-ray diffraction analysis were carried out to investigate the effects of Ag^+ , Cu^2+ and Zn^2+ on antimicrobial abilities of natural porous minerals, and the effect of preparation method on ion exchange capacity of antimicrobial material, respectively. The results show that for the ion exchange capacity, clay mineral is higher than fibrous mineral, i.e. both zeolite and montmorillonite are higher; the antimicrobial ability of material with Ag^+ is the bests the exchange capacities of materials with Cu^2+ or Zn^2+ are all higher, but the antimicrobial ability of Cu^2+ is better than that of Zn^2+ .展开更多
A facile and economical approach was developed for the large-scale production of powdered core-shell structured PTFE/Al (CS-PA) energetic materials through ultrasonic-assisted mixing. The low-cost micrometer-sized PTF...A facile and economical approach was developed for the large-scale production of powdered core-shell structured PTFE/Al (CS-PA) energetic materials through ultrasonic-assisted mixing. The low-cost micrometer-sized PTFE and Al particles were used as starting materials. Under high-power ultrasonic waves, the PTFE powder was dispersed into nano-to sub-micrometer-sized particles and then encapsulated the Al microparticles to form the core-shell structure. The heat of combustion, burning rate, and pressurization rate of the powdered CS-PA were measured. The thermal-initiated reaction behavior was further evaluated using thermogravimetry-differential scanning calorimetry. Subsequently, the bulk CS-PA with a uniform microstructure was obtained via cold isostatic pressing of the powdered CS-PA followed by vacuum sintering. For the bulk CS-PA, the quasi-static compression behavior was characterized, and the impact-initiated reaction processes were conducted using the Split Hopkinson Pressure Bar (SHPB) and evaluated by a high-speed camera. Compared to physically mixed PTFE/Al materials, the powdered and bulk CS-PA demonstrated enhanced thermal- and impact-initiated reaction characteristics respectively, proving the effectiveness of our approach for constructing core-shell structures.展开更多
During the operation of electronic devices,a considerable amount of heat and electromagnetic radiation is emitted.Therefore,the investigation of materials with electromagnetic shielding and thermal management abilitie...During the operation of electronic devices,a considerable amount of heat and electromagnetic radiation is emitted.Therefore,the investigation of materials with electromagnetic shielding and thermal management abilities has significant importance.Hybrid materials of three-dimensional graphene networks containing both carbon nanotubes(CNTs)and SiC whiskers(3D graphene-CNT-SiC)were synthesized.Using an aqueous-phase reduction method for the self-assembly of the graphene oxide,a three-dimen-sional porous graphene structure was fabricated.SiC whiskers,inserted between the graphene layers,formed a framework for longit-udinal thermal conduction,while CNTs attached to the SiC surface,created a dendritic structure that increased the bonding between the SiC whiskers and graphene,improving dielectric loss and thermal conductivity.It was found that the thermal conductivity of the hybrid material reached 123 W·m^(-1)·K^(-1),with a shielding effectiveness of 29.3 dB when the SiC addition was 2%.This result indic-ates that 3D graphene-CNT-SiC has excellent thermal conductivity and electromagnetic shielding performance.展开更多
Semiconductors and related fields today hold vast application prospects.The semiconductor wafer fabrication process involves steps such as substrate preparation and epitaxy,which occur in high-temperature corrosive en...Semiconductors and related fields today hold vast application prospects.The semiconductor wafer fabrication process involves steps such as substrate preparation and epitaxy,which occur in high-temperature corrosive environments.Consequently,components like crucibles,susceptors and wafer carriers require carbon-based materials such as graphite and carbon-carbon composites.However,traditional carbon materials underperform in these extreme conditions,failing to effectively address the challenges.This leads to issues including product contamination and shortened equipment lifespan.Therefore,effective protection of carbon materials is crucial.This paper reviews current research status on the preparation methods and properties of corrosion-resistant coatings within relevant domestic and international fields.Preparation methods include various techniques such as physical vapor deposition(PVD),chemical vapor deposition(CVD)and the sol-gel method.Furthermore,it offers perspectives on future research directions for corrosion-resistant coated components in semiconductor equipment.These include exploring novel coating materials,improving coating preparation processes,enhancing coating corrosion resistance,as well as further investigating the interfacial interactions between coatings and carbon substrates to achieve better adhesion and compatibility.展开更多
[Background and purposes]In recent years,there has been growing attention in academia and industry on the development of high-performance electromagnetic wave(EMW)absorbing materials.However,creating lightweight broad...[Background and purposes]In recent years,there has been growing attention in academia and industry on the development of high-performance electromagnetic wave(EMW)absorbing materials.However,creating lightweight broadband absorbers remains a challenge in terms of practical applications.EMW absorbing materials primarily rely on the magnetic loss of magnetic materials and/or the dielectric loss of dielectric materials to convert EMW energy into thermal energy for dissipation.Among various magnetic materials,Fe_(3)O_(4) plays an irreplaceable role in EMW absorption due to its high saturation magnetization,low cost and compatible dielectric loss in the gigahertz frequency range.Nevertheless,the high density,large matching thickness and narrow absorption bandwidth of Fe_(3)O_(4) pose significant challenges for practical applications.In contrast,one-dimensional(1D)structures not only retain the characteristic properties of lightweight,chemical stability and high dielectric loss,but also exhibit anisotropic structures and large aspect ratios.Additionally,researchers have found that the minimum reflection loss(RL)of hollow carbon materials with mesopores is nearly four times that of non-porous hollow carbon materials and nine times that of dense carbon materials.According to Maxwell's EMW theory,composites consisting of Fe_(3)O_(4) and one-dimensional(1D)mesoporous carbon materials can leverage their respective advantages by optimizing the composition and structure of the composites to balance u,and Er,thereby enhancing EMW absorption performance.Additionally,numerous studies have demonstrated that composites composed of multi-component heterostructures significantly enhance the EAB.This enhancement is primarily ascribed to the numerous interface polarization losses generated by the additional heterostructure interfaces,which also improve the overall impedance matching of the composites.In this study,we leverage the advantages of magnetic/carbon composites,one-dimensional(1D)mesoporous carbon and multi-component heterostructures to prepare a composite of 1D mesoporous carbon-coated manganese oxide(Mn_(3)O_(4) and MnO,denoted as Mn_(x)O_(y))embedded with Fe_(3)0_(4) nanoparticles(Mn_(x)O_(y)/C@Fe_(3)O_(4)).This composite was synthesized and its formation mechanism and microstructure were analyzed in detail.At the same time,the influence of this Mn_(x)O_(y)/C@Fe_(3)O_(4) structure on EMW properties and absorbing performance was further discussed.[Methods]Firstly,MnO_(2) nanowires were synthesized by using a simple hydrothermal method.Then,the MnO_(2) nanowires served as templates for the synthesis of MnO_(2)/PDA@Fe^(3+)composites through the in-situ polymerization of dopamine and Fe^(3+)adsorption.Finally,1D mesoporous carbon-coated manganese oxide composite embedded with Fe_(3)O_(4) nanoparticles(Mn_(x)O_(y)/C@Fe_(3)O_(4))composites were obtained after heat treatment at 550℃ in N_(2).The crystal structure of the samples was analyzed using X-ray diffractometer with Cu Ka irradiation.Scanning electron microscopy(SEM)and high-resolution transmission electron microscopy(TEM)were used to observe microstructure and morphology of the samples.Nitrogen sorption measurements were obtained at 77 K on a Quantachrome surface area and pore size analyzer to measure the specific surface area and pore size distribution.XPS analysis was performed on X-ray photoelectron spectrometer with monochromatic Al Ka radiation.Magnetization curves of the samples were recorded with a Quantum Design physical property measurement system(PPMS-9)at room temperature.The electromagnetic parameters of the Mn_(x)O_(y)/C@Fe_(3)O_(4) composites were measured using an Agilent N5230C network analyzer in the frequency range of 2-18 GHz.For electromagentic testing,the Mn,Oy/C@Fe34 composites and paraffin wax were mixed at 50°C according to the mass ratio of 15 wt.%,20 wt.%and 25 wt.%,and pressed in a special mold to make coaxial rings(inner diameter=3.04 mm,outer diameter-7 mm),which were denoted as S-1,S-2 and S-3,respectively.[Results]SEM images illustrate the preparation process of iD mesoporous carbon-coated manganese oxide embedded with Fe3O4 nanoparticles composites(Mn_(x)O_(y)/C@Fe_(3)O_(4)).Most of the manganese oxide(Mn,Oy)was reduced to granular after heat treatment,while the outer carbon layer remains its 1D morphology and the carbon layer is interspersed with Fe_(3)O_(4) nanoparticles.The diffraction peaks of MnO_(2) nanowires align well with the body-centered tetragonal a-MnO2.For the Mn_(x)O_(y)/C@Fe_(3)O_(4) composites,the signals of α-MnO_(2) disappears,followed by the emergence of Mn_(3)O_(4) and three prominent diffraction peaks for the cubic MnO.In addition,four weak diffraction peaks correspond to the magnetite Fe_(3)O_(4),consistent with the HRTEM results.The corresponding nitrogen adsorption-desorption isotherm and pore size distribution curve are presented to further analyze the mesoporous structure of composite.The surface composition and element valence states of the Mn_(x)O_(y)/C@Fe_(3)O_(4) composite were investigated by using XPS.The polarization relaxation processes were analyzed according to the Debye theory which describes the relationship between e'and e".Besides the polarization loss,the contribution of the conduction loss plays an important role for the overall dielectric loss.The magnetization curve of Mn_(x)O_(y)/C@Fe_(3)O_(4) exhibits typical ferromagnetic behavior.The permittivity parameter(Co),defined as Co=u"(u)^(-2)f^(-1) determine the contribution of eddy current effect to magnetic loss.The tand values are all larger than those of tand,for the three samples,indicating that the loss capacity of Mn_(x)O_(y)/C@Fe_(3)O_(4) composites is mainly derived from the dielectric loss.Although tand,is smaller,it plays an important role in improving the impedance matching of Mn_(x)O_(y)/C@Fe_(3)O_(4) composites.When the filler loading is 15 wt.%,the RL of sample S-1 is about-10.0 dB at the thickness of 1.5 mm with narrow EAB.As the filler loading increased to 20 wt.%,the RL of sample S-2 reached-62.0 dB at a thickness of 2.2 mm and the EAB was 6.4 GHz at a small thickness of 1.7 mm.When the filler loading is further increased to 25 wt.%,the microwave absorption performance of sample S3 decreased significantly with a little region of RL<-10.0 dB at the thickness of 5.0 mm.The values of[Zin/Zol of the three samples at thicknesses of 1.5-5.0 mm were calculated.Due to good impedance matching of S-2,the incident EMW can enter the material and then can be dissipated through dipole polarization loss,interface polarization loss,conduction loss,eddy current loss and natural ferromagnetic resonance loss.[Conclusions]1D Mn_(x)O_(y)/C@Fe_(3)O_(4) was synthesized via a process involving the coating of polydopamine,adsorption of Fe(ll)salts and heat treatment,using MnO_(2) nanowires as templates.The multi-component heterostructure of the Mn_(x)O_(y)/C@Fe_(3)O_(4) composite(Mn_(3)O_(4),MnO,Fe_(3)O_(4),and C)enhances the interfacial interactions between the different phases,providing increased interface polarization loss under the action of an alternating electromagnetic field.The numerous defects and terminal groups in the mesoporous carbon provide abundant dipole polarization centers.Additionally,the presence of mesopores reduces the weight of the material while increasing the multiple scattering losses of the electromagnetic waves within the material.The ID carbon structure in the matrix forms a conductive network between adjacent fibers,facilitating electron migration and transition,thereby enhancing conductive loss.The incorporation of magnetic Fe_(3)O_(4) nanoparticles introduces eddy current loss and natural ferromagnetic resonance loss,thus increasing magnetic loss.Moreover,the synergistic effect between dielectric and magnetic losses improves the impedance matching of the material,leading to excellent EMW absorption performance.展开更多
To extend a new family of aminophosphine-coordinated[FeFe]-hydrogenase mimics for catalytic hydro-gen(H_(2))evolution,we carried out the ligand substitutions of diiron hexacarbonyl precursors[Fe_(2)(μ-X_(2)pdt)(CO)_(...To extend a new family of aminophosphine-coordinated[FeFe]-hydrogenase mimics for catalytic hydro-gen(H_(2))evolution,we carried out the ligand substitutions of diiron hexacarbonyl precursors[Fe_(2)(μ-X_(2)pdt)(CO)_(6)](X_(2)pdt=(SCH_(2))_(2)CX_(2),X=Me,H)with aminodiphosphines(Ph_(2)PCH_(2))_(2)NY(Y=(CH_(2))_(2)OH,(CH_(2))_(3)OH)to obtain two new diiron aminophosphine complexes[Fe_(2)(L1)(μ-Me_(2)pdt)(CO)_(5)](1)and[Fe_(2)(L2)(μ-H_(2)pdt)(CO)_(5)](2),where L1=3-[(diphe-nylphosphaneyl)methyl]oxazolidine,L2=3-[(diphenylphosphaneyl)methyl]-1,3-oxazinane.Moreover,the structures of 1 and 2 have been fully confirmed by elemental analysis,spectroscopic techniques,and single-crystal X-ray diffraction.Using cyclic voltammetry(CV),we investigated the electrochemical redox performance and proton reduc-tion activities of 1 and 2 in acetic acid(HOAc).The CV study indicates that diiron aminophosphine complexes 1 and 2 can be considered to be hydrogenase-inspired diiron molecular electrocatalysts for the reduction of protons into H 2 generation in the presence of HOAc.CCDC:2443967,1;2443969,2.展开更多
Direct ethanol fuel cells(DEFCs)are a promising alternative to conventional energy sources,offering high energy density,environmental sustainability,and operational safety.Compared to methanol fuel cells,DEFCs exhibit...Direct ethanol fuel cells(DEFCs)are a promising alternative to conventional energy sources,offering high energy density,environmental sustainability,and operational safety.Compared to methanol fuel cells,DEFCs exhibit lower toxicity and a more mature preparation process.Unlike hydrogen fuel cells,DEFCs provide superior storage and transport feasibility,as well as cost-effectiveness,significantly enhancing their commercial viability.However,the stable C-C bond in ethanol creates a high activation energy barrier,often resulting in incomplete electrooxidation.Current commercial platinum(Pt)-and palladium(Pd)-based catalysts demonstrate low C-C bond cleavage efficiency(<7.5%),severely limiting DEFC energy output and power density.Furthermore,high catalyst costs and insufficient activity impede large-scale commercialization.Recent advances in DEFC anode catalyst design have focused on optimizing material composition and elucidating catalytic mechanisms.This review systematically examines developments in ethanol electrooxidation catalysts over the past five years,highlighting strategies to improve C1 pathway selectivity and C-C bond activation.Key approaches,such as alloying,nanostructure engineering,and interfacial synergy effects,are discussed alongside their mechanistic implications.Finally,we outline current challenges and future prospects for DEFC commercialization.展开更多
Lithium-air batteries(LABs)are regarded as a next-generation energy storage option due to their relatively high energy density.The cyclic stability and lifespan of LABs are mainly influenced by the formation and decom...Lithium-air batteries(LABs)are regarded as a next-generation energy storage option due to their relatively high energy density.The cyclic stability and lifespan of LABs are mainly influenced by the formation and decomposition of lithium-based oxides at the air cathode,which not only lead to a low cathode catalytic efficiency but also restrict the electrochemical reversibility and cause side reaction problems.Carbon materials are considered key to solving these problems due to their conductivity,functional flexibility,and adjustable pore structure.This paper considers the research progress on carbon materials as air cathode catalytic materials for LABs,focusing on their structural characteristics,electrochemical behavior,and reaction mechanisms.Besides being used as air cathodes,carbon materials also show potential for being used as protective layers for metal anodes or as anode materials for LABs.展开更多
The interfacial interaction between HMX molecules and coating materials is the key to the safety performance of explosives and has received extensive attention.However,screening suitable coating agents to enhance the ...The interfacial interaction between HMX molecules and coating materials is the key to the safety performance of explosives and has received extensive attention.However,screening suitable coating agents to enhance the interfacial effect to obtain high-energy and low-sensitivity explosives has long been a major challenge.In this work,HMX-PEI/rGO/g-C_(3)N_(4)(HPrGC)composites were innovatively prepared by a multi-level coating strategy of two-dimensional graphite rGO and g-C_(3)N_(4).The g-C_(3)N_(4) used for desensitization has a richπ-conjugated system and shows outstanding ability in reducing friction sensitivity.The hierarchical structure of HPrGC formed by electrostatic self-assembly andπ-πstacking can effectively dissipate energy accumulation under heat and mechanical stimulation through structural evolution,thus exhibiting a prominent synergistic desensitization effect on HMX.The results show that rGO/gC_(3)N_(4) coating has no effect on the crystal structure and chemical structure of HMX.More importantly,the perfect combination of g-C_(3)N_(4) and rGO endows HPrGC with enhanced thermal stability and ideal mechanical sensitivity(IS:21 J,FS:216 N).Obviously,the new fabrication of HPrGC enriches the variety of desensitizer materials and helps to deepen the understanding of the interaction between explosives and coatings.展开更多
Aqueous zinc ion batteries are regarded as one of the most promising candidates for large-scale energy stor-age due to their high safety,cost-effectiveness,and environ-mental friendliness.However,uncontrolled zinc den...Aqueous zinc ion batteries are regarded as one of the most promising candidates for large-scale energy stor-age due to their high safety,cost-effectiveness,and environ-mental friendliness.However,uncontrolled zinc dendrite growth and side reactions of the zinc anode decrease the sta-bility of Zn batteries.We report the synthesis of an air-oxid-ized carbon nanotube(O-CNT)film by chemical vapor de-position followed by heat treatment in air which is used as a protective layer on the Zn foil to suppress zinc dendrite growth.The increase in the hydrophilicity of the O-CNT film caused by air oxidation facilitates zinc deposition between the film and the anode instead of deposition on the film surface.The porous structure of the O-CNT film homogenizes the Zn^(2+)ion flux and the electric field on the surface of the Zn foil,leading to the uniform deposition of Zn.As a result,a O-CNT@Zn symmetric cell has a much better cycling stability with a life of more than 3000 h at 1 mA cm^(−2) with a capacity of 1 mAh cm^(−2),and values of more than 2000 h and 1 mAh cm^(−2) at 5 mA cm^(−2).In addition,a O-CNT@Zn||Mn^(2+)inserted hydrated vanadium pentoxide(MnVOH)full cell has a better rate per-formance than a Zn||MnVOH cell,achieving a high discharge capacity of 194 mAh g^(−1) at a high current density of 8 A g^(−1).In a long-term cycling test,the O-CNT@Zn||MnVOH full cell has a capacity retention of 58.8%after 2000 cycles at a current density of 5 A·g^(−1).展开更多
FVS1212/FVS0812 material was prepared by adding FVS1212 powder into FVS0812 powder. The structure and mechanical properties of materials were studied by means of X-Ray, tensile measurement, OM and SEM. The results sho...FVS1212/FVS0812 material was prepared by adding FVS1212 powder into FVS0812 powder. The structure and mechanical properties of materials were studied by means of X-Ray, tensile measurement, OM and SEM. The results show that adding proper content FVS1212 powders can improve the tensile strength of FVS0812 aluminum at room temperature and elevated temperature, and that the elongation of FVS1212/FVS0812 material is better than that of FVS1212 aluminum.展开更多
Carbon materials are a key component in energy storage and conversion devices and their microstructure plays a crucial role in determining device performance.However,traditional carbon materials are unable to meet the...Carbon materials are a key component in energy storage and conversion devices and their microstructure plays a crucial role in determining device performance.However,traditional carbon materials are unable to meet the requirements for applications in emerging fields such as renewable energy and electric vehicles due to limitations including a disordered structure and uncontrolled defects.With an aim of realizing devisable structures,adjustable functions,and performance breakthroughs,superstructured carbons is proposed and represent a category of carbon-based materials,characterized by precisely-built pores,networks,and interfaces.Superstructured carbons can overcome the limitations of traditional carbon materials and improve the performance of energy storage and conversion devices.We review the structure-activity relationships of superstructured carbons and recent research advances from three aspects including a precisely customized pore structure,a dense carbon network framework,and a multi-component highly coupled interface between the different components.Finally,we provide an outlook on the future development of and practical challenges in energy storage and conversion devices.展开更多
The ductile-to-brittle transition temperature(DBTT)of high strength steels can be optimized by tailoring microstructure and crystallographic orientation characteristics,where the start cooling temperature plays a key ...The ductile-to-brittle transition temperature(DBTT)of high strength steels can be optimized by tailoring microstructure and crystallographic orientation characteristics,where the start cooling temperature plays a key role.In this work,X70 steels with different start cooling temperatures were prepared through thermo-mechanical control process.The quasi-polygonal ferrite(QF),granular bainite(GB),bainitic ferrite(BF)and martensite-austenite constituents were formed at the start cooling temperatures of 780℃(C1),740℃(C2)and 700℃(C3).As start cooling temperature decreased,the amount of GB decreased,the microstructure of QF and BF increased.Microstructure characteristics of the three samples,such as high-angle grain boundaries(HAGBs),MA constituents and crystallographic orientation,also varied with the start cooling temperatures.C2 sample had the lowest DBTT value(−86℃)for its highest fraction of HAGBs,highest content of<110>oriented grains and lowest content of<001>oriented grains parallel to TD.The high density of{332}<113>and low density of rotated cube{001}<110>textures also contributed to the best impact toughness of C2 sample.In addition,a modified model was used in this paper to quantitatively predict the approximate DBTT value of steels.展开更多
Effect of flip chip bonding parameters on microstructure at the interconnect interface and shear properties of 64.8Sn35.2Pb microbumps were investigated in this work.Results show that the main intermetallic compound(I...Effect of flip chip bonding parameters on microstructure at the interconnect interface and shear properties of 64.8Sn35.2Pb microbumps were investigated in this work.Results show that the main intermetallic compound(IMC)at the interconnect interface is(Ni,Cu)_(3)Sn_(4)phase,and meanwhile a small amount of(Cu,Ni)_(6)Sn_(5)phase with a size of 50−100 nm is formed around(Ni,Cu)_(3)Sn_(4)phase.The orientation relationship of[-1-56](Ni,Cu)_(3)Sn_(4)//[152](Cu,Ni)_(6)Sn_(5)and(601)(Ni,Cu)_(3)Sn_(4)//(-201)(Cu,Ni)_(6)Sn_(5)is found between these two phases,and the atomic matching at the interface of the two phases is low.The highest shear force of 77.3 gf is achieved in the 64.8Sn35.2Pb microbump at the peak temperature of 250℃and parameter V1 because dense IMCs and no cracks form at the interconnect interface.Two typical fracture modes of microbumps are determined as solder fracture and mixed fracture.The high thermal stress presenting in the thick IMCs layer induces crack initiation,and cracks propagate along theα/βphase boundaries in the Sn-Pb solder under shear force,leading to a mixed fracture mode in the microbumps.展开更多
The pure Mg with columnar crystals was prepared by directional solidification,and the effect of process parameters on the crystal orientation and tensile properties was studied.Moreover,the microstructure evolution du...The pure Mg with columnar crystals was prepared by directional solidification,and the effect of process parameters on the crystal orientation and tensile properties was studied.Moreover,the microstructure evolution during tensile deformation was analyzed by electron backscatter diffraction(EBSD)technology.Furthermore,the slip within adjacent grains and grain boundary strain were discussed using the bicrystal model theory.The results show that the microstructure of the pure Mg at a pulling rate of 200μm/s is columnar polycrystal with growth orientation concentrated in<022ˉ5>,and no transverse grain boundaries can be seen.In addition,the Schmid factors(SFs)of basalslips in columnar crystals are higher than 0.43 under tensile stress.Moreover,the geometric compatibility factor of slip systems on both sides of grain boundaries is greater than 0.7,showing good strain coordination ability of grain boundaries.Therefore,the elongation of the directionally solidified pure Mg is as high as 53%at room temperature.展开更多
High-purity silver(Ag)is extensively utilized in electronics,aerospace,and other advanced industries due to its excellent thermal conductivity,electrical conductivity,and machinability.However,the prohibitive material...High-purity silver(Ag)is extensively utilized in electronics,aerospace,and other advanced industries due to its excellent thermal conductivity,electrical conductivity,and machinability.However,the prohibitive material cost poses substantial challenges for optimizing thermal processing parameters through repetitive experimental trials.In this work,hot compression experiments on high-purity silver were conducted using a Gleeble-3800 thermal simulator.The high temperature deformation behaviors,dynamic recovery(DRV)and dynamic recrystallization(DRX)of high-purity silver were studied by constructing an Arrhenius constitutive equation and developing thermal processing maps.The results show that plastic instability of high-purity silver occurs at high strain rates and the optimized hot processing parameters are the strain rate below 0.001 s^(−1) and the temperature of 340−400℃.Microstructural observations exhibit that DRV prefers to occur at lower deformation temperatures(e.g.,250℃).This is attributed to the low stacking fault energy of high-purity silver,which facilitates the decomposition of dislocations into partial dislocations and promotes high-density dislocation accumulation.Furthermore,DRX in high-purity silver becomes increasingly pronounced with increasing deformation temperature and reaches saturation at 350℃.展开更多
Effects of ultrasonic bonding parameters on atomic diffusion, microstructure at the Al-Au interface, and shear strength of Al-Au ultrasonic bonding were investigated by the combining experiments and finite element (FE...Effects of ultrasonic bonding parameters on atomic diffusion, microstructure at the Al-Au interface, and shear strength of Al-Au ultrasonic bonding were investigated by the combining experiments and finite element (FE) simulation. The quantitative model of atomic diffusion, which is related to the ultrasonic bonding parameters, time and distance, is established to calculate the atomic diffusion of the Al-Au interface. The maximum relative error between the calculated and experimental fraction of Al atom is 7.35%, indicating high prediction accuracy of this model. During the process of ultrasonic bonding, Au8Al3 is the main intermetallic compound (IMC) at the Al-Au interface. With larger bonding forces, higher ultrasonic powers and longer bonding time, it is more difficult to remove the oxide particles from the Al-Au interface, which hinders the atomic diffusion. Therefore, the complicated stress state and the existence of oxide particles both promotes the formation of holes. The shear strength of Al-Au ultrasonic bonding increases with increasing bonding force, ultrasonic power and bonding time. However, combined with the presence of holes at especial parameters, the optimal ultrasonic bonding parameter is confirmed to be a bonding force of 23 gf, ultrasonic power of 75 mW and bonding time of 21 ms.展开更多
基金National Natural Science Foundation of China (52202139, 52072178)。
文摘Pb(Zr,Ti)O_(3)-Pb(Zn_(1/3)Nb_(2/3))O_(3) (PZT-PZN) based ceramics, as important piezoelectric materials, have a wide range of applications in fields such as sensors and actuators, thus the optimization of their piezoelectric properties has been a hot research topic. This study investigated the effects of phase boundary engineering and domain engineering on (1-x)[0.8Pb(Zr_(0.5)Ti_(0.5))O_(3)-0.2Pb(Zn_(1/3)Nb_(2/3))O_(3)]-xBi(Zn_(0.5)Ti_(0.5))O_(3) ((1-x)(0.8PZT-0.2PZN)- xBZT) ceramic to obtain excellent piezoelectric properties. The crystal phase structure and microstructure of ceramic samples were characterized. The results showed that all samples had a pure perovskite structure, and the addition of BZT gradually increased the grain size. The addition of BZT caused a phase transition in ceramic samples from the morphotropic phase boundary (MPB) towards the tetragonal phase region, which is crucial for optimizing piezoelectric properties. By adjusting content of BZT and precisely controlling position of the phase boundary, the piezoelectric performance can be optimized. Domain structure is one of the key factors affecting piezoelectric performance. By using domain engineering techniques to optimize grain size and domain size, piezoelectric properties of ceramic samples have been significantly improved. Specifically, excellent piezoelectric properties (piezoelectric constant d_(33)=320 pC/N, electromechanical coupling factor kp=0.44) were obtained simultaneously for x=0.08. Based on experimental results and theoretical analysis, influence mechanisms of phase boundary engineering and domain engineering on piezoelectric properties were explored. The study shows that addition of BZT not only promotes grain growth, but also optimizes the domain structure, enabling the polarization reversal process easier, thereby improving piezoelectric properties. These research results not only provide new ideas for the design of high-performance piezoelectric ceramics, but also lay a theoretical foundation for development of related electronic devices.
文摘LiNi_(0.5)Mn_(1.5)O_4(LNMO) was prepared by a high-temperature solid phase method,and then Al PO_(4)(AP) was coated on the polyhedral LNMO surface by the wet chemical method.The experimental results showed that the LNMO-1%AP|Li cell prepared with a 1%mass ratio of Al PO_(4and) LNMO had better electrochemical performance;after 450 cycles at 1C,its discharge specific capacity maintained 108.78 m Ah·g^(-1),while that of the LNMO|Li cell was only 86.04 m Ah·g^(-1).Especially at the high rates of 5C and 10C,the electrochemical properties of the former were far superior to the latter.This was attributed to the fact that the AP coating made the surface of LNMO in contact with the electrolyte more stable,effectively promoted the Li~+transport,and reduced the polarization voltage of the electrode.
基金supported by National Natural Science Foundation of China(52302034,52402060,52202201,52021006)Beijing National Laboratory for Molecular Sciences(BNLMS-CXTD202001)+1 种基金Shenzhen Science and Technology Innovation Commission(KQTD20221101115627004)China Postdoctoral Science Foundation(2024T170972)。
文摘Graphdiyne(GDY)is a two-dimensional carbon allotrope with exceptional physical and chemical properties that is gaining increasing attention.However,its efficient and scalable synthesis remains a significant challenge.We present a microwave-assisted approach for its continuous,large-scale production which enables synthesis at a rate of 0.6 g/h,with a yield of up to 90%.The synthesized GDY nanosheets have an average diameter of 246 nm and a thickness of 4 nm.We used GDY as a stable coating for potassium(K)metal anodes(K@GDY),taking advantage of its unique molecular structure to provide favorable paths for K-ion transport.This modification significantly inhibited dendrite formation and improved the cycling stability of K metal batteries.Full-cells with perylene-3,4,9,10-tetracarboxylic dianhydride(PTCDA)cathodes showed the clear superiority of the K@GDY anodes over bare K anodes in terms of performance,stability,and cycle life.The K@GDY maintained a stable voltage plateau and gave an excellent capacity retention after 600 cycles with nearly 100%Coulombic efficiency.This work not only provides a scalable and efficient way for GDY synthesis but also opens new possibilities for its use in energy storage and other advanced technologies.
文摘The liquid ion exchange method, solid salt melt method and dry-wet circulation method were used to prepare natural porous antimicrobial materials with natural minerals, such as zeolite, spilite, palygorskite and montmorillonite, respectively. Atomic absorption spectrum and X-ray diffraction analysis were carried out to investigate the effects of Ag^+ , Cu^2+ and Zn^2+ on antimicrobial abilities of natural porous minerals, and the effect of preparation method on ion exchange capacity of antimicrobial material, respectively. The results show that for the ion exchange capacity, clay mineral is higher than fibrous mineral, i.e. both zeolite and montmorillonite are higher; the antimicrobial ability of material with Ag^+ is the bests the exchange capacities of materials with Cu^2+ or Zn^2+ are all higher, but the antimicrobial ability of Cu^2+ is better than that of Zn^2+ .
基金This work was supported by the National Natural Science Foundation of China(No.51571033,11804022)the Science and Technology on Transient Impact Laboratory Foundation(No.6142606183208).
文摘A facile and economical approach was developed for the large-scale production of powdered core-shell structured PTFE/Al (CS-PA) energetic materials through ultrasonic-assisted mixing. The low-cost micrometer-sized PTFE and Al particles were used as starting materials. Under high-power ultrasonic waves, the PTFE powder was dispersed into nano-to sub-micrometer-sized particles and then encapsulated the Al microparticles to form the core-shell structure. The heat of combustion, burning rate, and pressurization rate of the powdered CS-PA were measured. The thermal-initiated reaction behavior was further evaluated using thermogravimetry-differential scanning calorimetry. Subsequently, the bulk CS-PA with a uniform microstructure was obtained via cold isostatic pressing of the powdered CS-PA followed by vacuum sintering. For the bulk CS-PA, the quasi-static compression behavior was characterized, and the impact-initiated reaction processes were conducted using the Split Hopkinson Pressure Bar (SHPB) and evaluated by a high-speed camera. Compared to physically mixed PTFE/Al materials, the powdered and bulk CS-PA demonstrated enhanced thermal- and impact-initiated reaction characteristics respectively, proving the effectiveness of our approach for constructing core-shell structures.
文摘During the operation of electronic devices,a considerable amount of heat and electromagnetic radiation is emitted.Therefore,the investigation of materials with electromagnetic shielding and thermal management abilities has significant importance.Hybrid materials of three-dimensional graphene networks containing both carbon nanotubes(CNTs)and SiC whiskers(3D graphene-CNT-SiC)were synthesized.Using an aqueous-phase reduction method for the self-assembly of the graphene oxide,a three-dimen-sional porous graphene structure was fabricated.SiC whiskers,inserted between the graphene layers,formed a framework for longit-udinal thermal conduction,while CNTs attached to the SiC surface,created a dendritic structure that increased the bonding between the SiC whiskers and graphene,improving dielectric loss and thermal conductivity.It was found that the thermal conductivity of the hybrid material reached 123 W·m^(-1)·K^(-1),with a shielding effectiveness of 29.3 dB when the SiC addition was 2%.This result indic-ates that 3D graphene-CNT-SiC has excellent thermal conductivity and electromagnetic shielding performance.
基金National Natural Science Foundation of China(12002196,12102140)。
文摘Semiconductors and related fields today hold vast application prospects.The semiconductor wafer fabrication process involves steps such as substrate preparation and epitaxy,which occur in high-temperature corrosive environments.Consequently,components like crucibles,susceptors and wafer carriers require carbon-based materials such as graphite and carbon-carbon composites.However,traditional carbon materials underperform in these extreme conditions,failing to effectively address the challenges.This leads to issues including product contamination and shortened equipment lifespan.Therefore,effective protection of carbon materials is crucial.This paper reviews current research status on the preparation methods and properties of corrosion-resistant coatings within relevant domestic and international fields.Preparation methods include various techniques such as physical vapor deposition(PVD),chemical vapor deposition(CVD)and the sol-gel method.Furthermore,it offers perspectives on future research directions for corrosion-resistant coated components in semiconductor equipment.These include exploring novel coating materials,improving coating preparation processes,enhancing coating corrosion resistance,as well as further investigating the interfacial interactions between coatings and carbon substrates to achieve better adhesion and compatibility.
基金National Natural Science Foundation of China (52371171, 52222106, 51971008, 52121001)Fund of National Key Laboratory of Scattering and Radiation (Beijing Institute of Environmental Features)。
文摘[Background and purposes]In recent years,there has been growing attention in academia and industry on the development of high-performance electromagnetic wave(EMW)absorbing materials.However,creating lightweight broadband absorbers remains a challenge in terms of practical applications.EMW absorbing materials primarily rely on the magnetic loss of magnetic materials and/or the dielectric loss of dielectric materials to convert EMW energy into thermal energy for dissipation.Among various magnetic materials,Fe_(3)O_(4) plays an irreplaceable role in EMW absorption due to its high saturation magnetization,low cost and compatible dielectric loss in the gigahertz frequency range.Nevertheless,the high density,large matching thickness and narrow absorption bandwidth of Fe_(3)O_(4) pose significant challenges for practical applications.In contrast,one-dimensional(1D)structures not only retain the characteristic properties of lightweight,chemical stability and high dielectric loss,but also exhibit anisotropic structures and large aspect ratios.Additionally,researchers have found that the minimum reflection loss(RL)of hollow carbon materials with mesopores is nearly four times that of non-porous hollow carbon materials and nine times that of dense carbon materials.According to Maxwell's EMW theory,composites consisting of Fe_(3)O_(4) and one-dimensional(1D)mesoporous carbon materials can leverage their respective advantages by optimizing the composition and structure of the composites to balance u,and Er,thereby enhancing EMW absorption performance.Additionally,numerous studies have demonstrated that composites composed of multi-component heterostructures significantly enhance the EAB.This enhancement is primarily ascribed to the numerous interface polarization losses generated by the additional heterostructure interfaces,which also improve the overall impedance matching of the composites.In this study,we leverage the advantages of magnetic/carbon composites,one-dimensional(1D)mesoporous carbon and multi-component heterostructures to prepare a composite of 1D mesoporous carbon-coated manganese oxide(Mn_(3)O_(4) and MnO,denoted as Mn_(x)O_(y))embedded with Fe_(3)0_(4) nanoparticles(Mn_(x)O_(y)/C@Fe_(3)O_(4)).This composite was synthesized and its formation mechanism and microstructure were analyzed in detail.At the same time,the influence of this Mn_(x)O_(y)/C@Fe_(3)O_(4) structure on EMW properties and absorbing performance was further discussed.[Methods]Firstly,MnO_(2) nanowires were synthesized by using a simple hydrothermal method.Then,the MnO_(2) nanowires served as templates for the synthesis of MnO_(2)/PDA@Fe^(3+)composites through the in-situ polymerization of dopamine and Fe^(3+)adsorption.Finally,1D mesoporous carbon-coated manganese oxide composite embedded with Fe_(3)O_(4) nanoparticles(Mn_(x)O_(y)/C@Fe_(3)O_(4))composites were obtained after heat treatment at 550℃ in N_(2).The crystal structure of the samples was analyzed using X-ray diffractometer with Cu Ka irradiation.Scanning electron microscopy(SEM)and high-resolution transmission electron microscopy(TEM)were used to observe microstructure and morphology of the samples.Nitrogen sorption measurements were obtained at 77 K on a Quantachrome surface area and pore size analyzer to measure the specific surface area and pore size distribution.XPS analysis was performed on X-ray photoelectron spectrometer with monochromatic Al Ka radiation.Magnetization curves of the samples were recorded with a Quantum Design physical property measurement system(PPMS-9)at room temperature.The electromagnetic parameters of the Mn_(x)O_(y)/C@Fe_(3)O_(4) composites were measured using an Agilent N5230C network analyzer in the frequency range of 2-18 GHz.For electromagentic testing,the Mn,Oy/C@Fe34 composites and paraffin wax were mixed at 50°C according to the mass ratio of 15 wt.%,20 wt.%and 25 wt.%,and pressed in a special mold to make coaxial rings(inner diameter=3.04 mm,outer diameter-7 mm),which were denoted as S-1,S-2 and S-3,respectively.[Results]SEM images illustrate the preparation process of iD mesoporous carbon-coated manganese oxide embedded with Fe3O4 nanoparticles composites(Mn_(x)O_(y)/C@Fe_(3)O_(4)).Most of the manganese oxide(Mn,Oy)was reduced to granular after heat treatment,while the outer carbon layer remains its 1D morphology and the carbon layer is interspersed with Fe_(3)O_(4) nanoparticles.The diffraction peaks of MnO_(2) nanowires align well with the body-centered tetragonal a-MnO2.For the Mn_(x)O_(y)/C@Fe_(3)O_(4) composites,the signals of α-MnO_(2) disappears,followed by the emergence of Mn_(3)O_(4) and three prominent diffraction peaks for the cubic MnO.In addition,four weak diffraction peaks correspond to the magnetite Fe_(3)O_(4),consistent with the HRTEM results.The corresponding nitrogen adsorption-desorption isotherm and pore size distribution curve are presented to further analyze the mesoporous structure of composite.The surface composition and element valence states of the Mn_(x)O_(y)/C@Fe_(3)O_(4) composite were investigated by using XPS.The polarization relaxation processes were analyzed according to the Debye theory which describes the relationship between e'and e".Besides the polarization loss,the contribution of the conduction loss plays an important role for the overall dielectric loss.The magnetization curve of Mn_(x)O_(y)/C@Fe_(3)O_(4) exhibits typical ferromagnetic behavior.The permittivity parameter(Co),defined as Co=u"(u)^(-2)f^(-1) determine the contribution of eddy current effect to magnetic loss.The tand values are all larger than those of tand,for the three samples,indicating that the loss capacity of Mn_(x)O_(y)/C@Fe_(3)O_(4) composites is mainly derived from the dielectric loss.Although tand,is smaller,it plays an important role in improving the impedance matching of Mn_(x)O_(y)/C@Fe_(3)O_(4) composites.When the filler loading is 15 wt.%,the RL of sample S-1 is about-10.0 dB at the thickness of 1.5 mm with narrow EAB.As the filler loading increased to 20 wt.%,the RL of sample S-2 reached-62.0 dB at a thickness of 2.2 mm and the EAB was 6.4 GHz at a small thickness of 1.7 mm.When the filler loading is further increased to 25 wt.%,the microwave absorption performance of sample S3 decreased significantly with a little region of RL<-10.0 dB at the thickness of 5.0 mm.The values of[Zin/Zol of the three samples at thicknesses of 1.5-5.0 mm were calculated.Due to good impedance matching of S-2,the incident EMW can enter the material and then can be dissipated through dipole polarization loss,interface polarization loss,conduction loss,eddy current loss and natural ferromagnetic resonance loss.[Conclusions]1D Mn_(x)O_(y)/C@Fe_(3)O_(4) was synthesized via a process involving the coating of polydopamine,adsorption of Fe(ll)salts and heat treatment,using MnO_(2) nanowires as templates.The multi-component heterostructure of the Mn_(x)O_(y)/C@Fe_(3)O_(4) composite(Mn_(3)O_(4),MnO,Fe_(3)O_(4),and C)enhances the interfacial interactions between the different phases,providing increased interface polarization loss under the action of an alternating electromagnetic field.The numerous defects and terminal groups in the mesoporous carbon provide abundant dipole polarization centers.Additionally,the presence of mesopores reduces the weight of the material while increasing the multiple scattering losses of the electromagnetic waves within the material.The ID carbon structure in the matrix forms a conductive network between adjacent fibers,facilitating electron migration and transition,thereby enhancing conductive loss.The incorporation of magnetic Fe_(3)O_(4) nanoparticles introduces eddy current loss and natural ferromagnetic resonance loss,thus increasing magnetic loss.Moreover,the synergistic effect between dielectric and magnetic losses improves the impedance matching of the material,leading to excellent EMW absorption performance.
文摘To extend a new family of aminophosphine-coordinated[FeFe]-hydrogenase mimics for catalytic hydro-gen(H_(2))evolution,we carried out the ligand substitutions of diiron hexacarbonyl precursors[Fe_(2)(μ-X_(2)pdt)(CO)_(6)](X_(2)pdt=(SCH_(2))_(2)CX_(2),X=Me,H)with aminodiphosphines(Ph_(2)PCH_(2))_(2)NY(Y=(CH_(2))_(2)OH,(CH_(2))_(3)OH)to obtain two new diiron aminophosphine complexes[Fe_(2)(L1)(μ-Me_(2)pdt)(CO)_(5)](1)and[Fe_(2)(L2)(μ-H_(2)pdt)(CO)_(5)](2),where L1=3-[(diphe-nylphosphaneyl)methyl]oxazolidine,L2=3-[(diphenylphosphaneyl)methyl]-1,3-oxazinane.Moreover,the structures of 1 and 2 have been fully confirmed by elemental analysis,spectroscopic techniques,and single-crystal X-ray diffraction.Using cyclic voltammetry(CV),we investigated the electrochemical redox performance and proton reduc-tion activities of 1 and 2 in acetic acid(HOAc).The CV study indicates that diiron aminophosphine complexes 1 and 2 can be considered to be hydrogenase-inspired diiron molecular electrocatalysts for the reduction of protons into H 2 generation in the presence of HOAc.CCDC:2443967,1;2443969,2.
基金supported by the National Natural Science Foundation of China(22472023,22202037)the Jilin Province Science and Technology Development Program(20250102077JC)the Fundamental Research Funds for the Central Universities(2412024QD014,2412023QD019).
文摘Direct ethanol fuel cells(DEFCs)are a promising alternative to conventional energy sources,offering high energy density,environmental sustainability,and operational safety.Compared to methanol fuel cells,DEFCs exhibit lower toxicity and a more mature preparation process.Unlike hydrogen fuel cells,DEFCs provide superior storage and transport feasibility,as well as cost-effectiveness,significantly enhancing their commercial viability.However,the stable C-C bond in ethanol creates a high activation energy barrier,often resulting in incomplete electrooxidation.Current commercial platinum(Pt)-and palladium(Pd)-based catalysts demonstrate low C-C bond cleavage efficiency(<7.5%),severely limiting DEFC energy output and power density.Furthermore,high catalyst costs and insufficient activity impede large-scale commercialization.Recent advances in DEFC anode catalyst design have focused on optimizing material composition and elucidating catalytic mechanisms.This review systematically examines developments in ethanol electrooxidation catalysts over the past five years,highlighting strategies to improve C1 pathway selectivity and C-C bond activation.Key approaches,such as alloying,nanostructure engineering,and interfacial synergy effects,are discussed alongside their mechanistic implications.Finally,we outline current challenges and future prospects for DEFC commercialization.
文摘Lithium-air batteries(LABs)are regarded as a next-generation energy storage option due to their relatively high energy density.The cyclic stability and lifespan of LABs are mainly influenced by the formation and decomposition of lithium-based oxides at the air cathode,which not only lead to a low cathode catalytic efficiency but also restrict the electrochemical reversibility and cause side reaction problems.Carbon materials are considered key to solving these problems due to their conductivity,functional flexibility,and adjustable pore structure.This paper considers the research progress on carbon materials as air cathode catalytic materials for LABs,focusing on their structural characteristics,electrochemical behavior,and reaction mechanisms.Besides being used as air cathodes,carbon materials also show potential for being used as protective layers for metal anodes or as anode materials for LABs.
基金the financial support from the National Natural Science Foundation of China (Grant No.51972278)the Open Project of the State Key Laboratory of Environment-friendly Energy Materials (Southwest University of Science and Technology,Grant No.20fksy16)。
文摘The interfacial interaction between HMX molecules and coating materials is the key to the safety performance of explosives and has received extensive attention.However,screening suitable coating agents to enhance the interfacial effect to obtain high-energy and low-sensitivity explosives has long been a major challenge.In this work,HMX-PEI/rGO/g-C_(3)N_(4)(HPrGC)composites were innovatively prepared by a multi-level coating strategy of two-dimensional graphite rGO and g-C_(3)N_(4).The g-C_(3)N_(4) used for desensitization has a richπ-conjugated system and shows outstanding ability in reducing friction sensitivity.The hierarchical structure of HPrGC formed by electrostatic self-assembly andπ-πstacking can effectively dissipate energy accumulation under heat and mechanical stimulation through structural evolution,thus exhibiting a prominent synergistic desensitization effect on HMX.The results show that rGO/gC_(3)N_(4) coating has no effect on the crystal structure and chemical structure of HMX.More importantly,the perfect combination of g-C_(3)N_(4) and rGO endows HPrGC with enhanced thermal stability and ideal mechanical sensitivity(IS:21 J,FS:216 N).Obviously,the new fabrication of HPrGC enriches the variety of desensitizer materials and helps to deepen the understanding of the interaction between explosives and coatings.
基金supported by the National Natural Science Foundation of China(22179093 and21905202)。
文摘Aqueous zinc ion batteries are regarded as one of the most promising candidates for large-scale energy stor-age due to their high safety,cost-effectiveness,and environ-mental friendliness.However,uncontrolled zinc dendrite growth and side reactions of the zinc anode decrease the sta-bility of Zn batteries.We report the synthesis of an air-oxid-ized carbon nanotube(O-CNT)film by chemical vapor de-position followed by heat treatment in air which is used as a protective layer on the Zn foil to suppress zinc dendrite growth.The increase in the hydrophilicity of the O-CNT film caused by air oxidation facilitates zinc deposition between the film and the anode instead of deposition on the film surface.The porous structure of the O-CNT film homogenizes the Zn^(2+)ion flux and the electric field on the surface of the Zn foil,leading to the uniform deposition of Zn.As a result,a O-CNT@Zn symmetric cell has a much better cycling stability with a life of more than 3000 h at 1 mA cm^(−2) with a capacity of 1 mAh cm^(−2),and values of more than 2000 h and 1 mAh cm^(−2) at 5 mA cm^(−2).In addition,a O-CNT@Zn||Mn^(2+)inserted hydrated vanadium pentoxide(MnVOH)full cell has a better rate per-formance than a Zn||MnVOH cell,achieving a high discharge capacity of 194 mAh g^(−1) at a high current density of 8 A g^(−1).In a long-term cycling test,the O-CNT@Zn||MnVOH full cell has a capacity retention of 58.8%after 2000 cycles at a current density of 5 A·g^(−1).
文摘FVS1212/FVS0812 material was prepared by adding FVS1212 powder into FVS0812 powder. The structure and mechanical properties of materials were studied by means of X-Ray, tensile measurement, OM and SEM. The results show that adding proper content FVS1212 powders can improve the tensile strength of FVS0812 aluminum at room temperature and elevated temperature, and that the elongation of FVS1212/FVS0812 material is better than that of FVS1212 aluminum.
文摘Carbon materials are a key component in energy storage and conversion devices and their microstructure plays a crucial role in determining device performance.However,traditional carbon materials are unable to meet the requirements for applications in emerging fields such as renewable energy and electric vehicles due to limitations including a disordered structure and uncontrolled defects.With an aim of realizing devisable structures,adjustable functions,and performance breakthroughs,superstructured carbons is proposed and represent a category of carbon-based materials,characterized by precisely-built pores,networks,and interfaces.Superstructured carbons can overcome the limitations of traditional carbon materials and improve the performance of energy storage and conversion devices.We review the structure-activity relationships of superstructured carbons and recent research advances from three aspects including a precisely customized pore structure,a dense carbon network framework,and a multi-component highly coupled interface between the different components.Finally,we provide an outlook on the future development of and practical challenges in energy storage and conversion devices.
基金Project(2018XK2301) supported by the Change-Zhu-Tan National Independent Innavation Demonstration Zone Special Program,China。
文摘The ductile-to-brittle transition temperature(DBTT)of high strength steels can be optimized by tailoring microstructure and crystallographic orientation characteristics,where the start cooling temperature plays a key role.In this work,X70 steels with different start cooling temperatures were prepared through thermo-mechanical control process.The quasi-polygonal ferrite(QF),granular bainite(GB),bainitic ferrite(BF)and martensite-austenite constituents were formed at the start cooling temperatures of 780℃(C1),740℃(C2)and 700℃(C3).As start cooling temperature decreased,the amount of GB decreased,the microstructure of QF and BF increased.Microstructure characteristics of the three samples,such as high-angle grain boundaries(HAGBs),MA constituents and crystallographic orientation,also varied with the start cooling temperatures.C2 sample had the lowest DBTT value(−86℃)for its highest fraction of HAGBs,highest content of<110>oriented grains and lowest content of<001>oriented grains parallel to TD.The high density of{332}<113>and low density of rotated cube{001}<110>textures also contributed to the best impact toughness of C2 sample.In addition,a modified model was used in this paper to quantitatively predict the approximate DBTT value of steels.
基金Project(U2341254)supported by Ye Qisun Science Foundation of National Natural Science Foundation of ChinaProject(52475406)supported by the National Nature Science Foundation of ChinaProject(2024CY2-GJHX-32)supported by the Key R&D Program of Shaanxi Province,China。
文摘Effect of flip chip bonding parameters on microstructure at the interconnect interface and shear properties of 64.8Sn35.2Pb microbumps were investigated in this work.Results show that the main intermetallic compound(IMC)at the interconnect interface is(Ni,Cu)_(3)Sn_(4)phase,and meanwhile a small amount of(Cu,Ni)_(6)Sn_(5)phase with a size of 50−100 nm is formed around(Ni,Cu)_(3)Sn_(4)phase.The orientation relationship of[-1-56](Ni,Cu)_(3)Sn_(4)//[152](Cu,Ni)_(6)Sn_(5)and(601)(Ni,Cu)_(3)Sn_(4)//(-201)(Cu,Ni)_(6)Sn_(5)is found between these two phases,and the atomic matching at the interface of the two phases is low.The highest shear force of 77.3 gf is achieved in the 64.8Sn35.2Pb microbump at the peak temperature of 250℃and parameter V1 because dense IMCs and no cracks form at the interconnect interface.Two typical fracture modes of microbumps are determined as solder fracture and mixed fracture.The high thermal stress presenting in the thick IMCs layer induces crack initiation,and cracks propagate along theα/βphase boundaries in the Sn-Pb solder under shear force,leading to a mixed fracture mode in the microbumps.
基金Projects(51775099,51675092)supported by the National Natural Science Foundation of ChinaProjects(E2021501019,E2022501001,E2022501006)supported by the Natural Science Foundation of Hebei Province,China。
文摘The pure Mg with columnar crystals was prepared by directional solidification,and the effect of process parameters on the crystal orientation and tensile properties was studied.Moreover,the microstructure evolution during tensile deformation was analyzed by electron backscatter diffraction(EBSD)technology.Furthermore,the slip within adjacent grains and grain boundary strain were discussed using the bicrystal model theory.The results show that the microstructure of the pure Mg at a pulling rate of 200μm/s is columnar polycrystal with growth orientation concentrated in<022ˉ5>,and no transverse grain boundaries can be seen.In addition,the Schmid factors(SFs)of basalslips in columnar crystals are higher than 0.43 under tensile stress.Moreover,the geometric compatibility factor of slip systems on both sides of grain boundaries is greater than 0.7,showing good strain coordination ability of grain boundaries.Therefore,the elongation of the directionally solidified pure Mg is as high as 53%at room temperature.
基金Project(52274369)supported by the National Natural Science Foundation of China。
文摘High-purity silver(Ag)is extensively utilized in electronics,aerospace,and other advanced industries due to its excellent thermal conductivity,electrical conductivity,and machinability.However,the prohibitive material cost poses substantial challenges for optimizing thermal processing parameters through repetitive experimental trials.In this work,hot compression experiments on high-purity silver were conducted using a Gleeble-3800 thermal simulator.The high temperature deformation behaviors,dynamic recovery(DRV)and dynamic recrystallization(DRX)of high-purity silver were studied by constructing an Arrhenius constitutive equation and developing thermal processing maps.The results show that plastic instability of high-purity silver occurs at high strain rates and the optimized hot processing parameters are the strain rate below 0.001 s^(−1) and the temperature of 340−400℃.Microstructural observations exhibit that DRV prefers to occur at lower deformation temperatures(e.g.,250℃).This is attributed to the low stacking fault energy of high-purity silver,which facilitates the decomposition of dislocations into partial dislocations and promotes high-density dislocation accumulation.Furthermore,DRX in high-purity silver becomes increasingly pronounced with increasing deformation temperature and reaches saturation at 350℃.
基金Project(2022YFB3707201) supported by the National Key R&D Program of ChinaProject(U2341254) supported by the Ye Qisun Science Foundation of National Natural Science Foundation of China+1 种基金Projects(0604022GH0202143,0604022SH0201143) supported by the NPU Aoxiang Distinguished Young Scholars,ChinaProject supported by the Funding of Young Top-notch Talent of the National Ten Thousand Talent Program,China。
文摘Effects of ultrasonic bonding parameters on atomic diffusion, microstructure at the Al-Au interface, and shear strength of Al-Au ultrasonic bonding were investigated by the combining experiments and finite element (FE) simulation. The quantitative model of atomic diffusion, which is related to the ultrasonic bonding parameters, time and distance, is established to calculate the atomic diffusion of the Al-Au interface. The maximum relative error between the calculated and experimental fraction of Al atom is 7.35%, indicating high prediction accuracy of this model. During the process of ultrasonic bonding, Au8Al3 is the main intermetallic compound (IMC) at the Al-Au interface. With larger bonding forces, higher ultrasonic powers and longer bonding time, it is more difficult to remove the oxide particles from the Al-Au interface, which hinders the atomic diffusion. Therefore, the complicated stress state and the existence of oxide particles both promotes the formation of holes. The shear strength of Al-Au ultrasonic bonding increases with increasing bonding force, ultrasonic power and bonding time. However, combined with the presence of holes at especial parameters, the optimal ultrasonic bonding parameter is confirmed to be a bonding force of 23 gf, ultrasonic power of 75 mW and bonding time of 21 ms.