期刊文献+
共找到109篇文章
< 1 2 6 >
每页显示 20 50 100
Atomically precise M-N-C electrocatalysts for oxygen reduction:Effects of inter-site distance,metal-metal interaction,coordination environment,and spin states
1
作者 Junfeng Huang Saira Ajmal +4 位作者 Anuj Kumar Jianwen Guo Mohammed Mujahid Alam Abdullah G.Al-Sehemi Ghulam Yasin 《Journal of Energy Chemistry》 2025年第2期132-155,I0004,共25页
Inspired by molecular catalysts,researchers developed atomically precise nitrogen-coordinated single or dual metal sites imbedded in graphitized carbon(M-N-C)to fully utilize metallic sites for 02activation.These cata... Inspired by molecular catalysts,researchers developed atomically precise nitrogen-coordinated single or dual metal sites imbedded in graphitized carbon(M-N-C)to fully utilize metallic sites for 02activation.These catalysts performed remarkably well in the electrocatalytic oxygen reduction reaction(ORR)due to their distinct coordination and electrical structures,Nonetheless,their maximum efficacy in practical applications has yet to be achieved.This agenda identifies tailoring the coordination environment,spin states,intersite distance,and metal-metal interaction as innovative approaches to regulate the ORR performance of these catalysts.However,it is necessary to undertake a precise assessment of these methodologies and the knowledge obtained to be implemented in the design of future M-N-C catalysts for ORR.Therefore,this review aims to analyze recent progress in M-N-C ORR catalysts,emphasizing their innovative engineering with aspects such as alteration in intersite distance,metal-metal interaction,coordination environment,and spin states.Additionally,we critically discuss how to logically monitor the atomic structure,local coordination,spin,and electronic states of M-N-C catalysts to modulate their ORR activity.We have also highlighted the challenges associated with M-N-C catalysts and proposed suggestions for their future design and fabrication. 展开更多
关键词 ELECTROCATALYSIS M-N-C electrocatalysts ORR Activity descriptors Spin states
在线阅读 下载PDF
Recent advances in core-shell organic framework-based photocatalysts for energy conversion and environmental remediation 被引量:1
2
作者 Qibing Dong Ximing Li +9 位作者 Yanyan Duan Qingyun Tian Xinxin Liang Yiyin Zhu Lin Tian Junjun Wang Atif Sial Yongqian Cui Ke Zhao Chuanyi Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期168-199,I0004,共33页
Direct conversion of solar energy into chemical energy in an environmentally friendly manner is one of the most promising strategies to deal with the environmental pollution and energy crisis.Among a variety of materi... Direct conversion of solar energy into chemical energy in an environmentally friendly manner is one of the most promising strategies to deal with the environmental pollution and energy crisis.Among a variety of materials developed as photocatalysts,the core-shell metal/covalent-organic framework(MOF or COF)photocatalysts have garnered significant attention due to their highly porous structure and the adjustability in both structure and functionality.The existing reviews on core-shell organic framework photocatalytic materials have mainly focused on core-shell MOF materials.However,there is still a lack of indepth reviews specifically addressing the photocatalytic performance of core-shell COFs and MOFs@COFs.Simultaneously,there is an urgent need for a comprehensive review encompassing these three types of core-shell structures.Based on this,this review aims to provide a comprehensive understanding and useful guidelines for the exploration of suitable core-shell organic framework photocatalysts towards appropriate photocatalytic energy conversion and environmental governance.Firstly,the classification,synthesis,formation mechanisms,and reasonable regulation of core-shell organic framework were summarized.Then,the photocatalytic applications of these three kinds of core-shell structures in different areas,such as H_(2)evolution,CO_(2)reduction,and pollutants degradation are emphasized.Finally,the main challenges and development prospects of core-shell organic framework photocatalysts were introduced.This review aims to provide insights into the development of a novel generation of efficient and stable core-shell organic framework materials for energy conversion and environmental remediation. 展开更多
关键词 Organic framework Core-shell structure PHOTOCATALYSIS Energy conversion Environmental remediation
在线阅读 下载PDF
Ag enhanced CuS nanoflower catalyst coupling dielectric barrier discharge plasma for disinfection performance and mechanism
3
作者 Run WANG Man WANG +5 位作者 Zhouling YANG Mingyu WANG Leyi LIU Lu ZHOU Yi ZHANG Yingqi SONG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第12期99-109,共11页
In this study,the hydrothermal method was employed to grow submicron CuS on carbon cloth(CC),and the photoreduction method was used to grow Ag nanoparticles on the CuS submicron flowers,thus forming the Ag/CuS/CC cata... In this study,the hydrothermal method was employed to grow submicron CuS on carbon cloth(CC),and the photoreduction method was used to grow Ag nanoparticles on the CuS submicron flowers,thus forming the Ag/CuS/CC catalytic electrode.The application of Ag/CuS/CC electrode-coupled dielectric barrier discharge(DBD)plasma in the disinfection of pathogenic bacteria in water was studied.The Ag/CuS/CC electrode exhibits strong antibacterial activity,and under an external voltage of 30 V,the degradation efficiency of Bacillus subtilis reaches 99.99%within 15 min without regeneration.After five cycles,the inactivation rate of Bacillus subtilis reached 99.99%within 25 min.The practical applicability of the Ag/CuS/CC-coupled DBD system for treating actual wastewater was evaluated,and the changes in biological toxicity were investigated.The results indicate that the prepared Ag/CuS/CC coupled DBD has great potential for safe disinfection of pathogenic bacteria in water through integrated processes. 展开更多
关键词 PLASMA CuS submicron flower active species pathogenic bacteria sterilization mechanism
在线阅读 下载PDF
Self-templating synthesis of biomass-based porous carbon nanotubes for energy storage and catalytic degradation applications
4
作者 Manman Xu Shiqi Fu +7 位作者 Yukai Wen Wei Li Qiongfang Zhuo Haida Zhu Zhikeng Zheng Yuwen Chen Anqi Wang Kai Yan 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期584-595,共12页
Dwindling energy sources and a worsening environment are huge global problems,and biomass wastes are an under-exploited source of material for both energy and material generation.Herein,self-template decoction dregs o... Dwindling energy sources and a worsening environment are huge global problems,and biomass wastes are an under-exploited source of material for both energy and material generation.Herein,self-template decoction dregs of Ganoderma lucidum-derived porous carbon nanotubes(ST-DDLGCs)were synthesized via a facile and scalable strategy in response to these challenges.ST-DDLGCs exhibited a large surface area(1731.51 m^(2)g^(-1))and high pore volume(0.76 cm^(3)g^(-1)),due to the interlacing tubular structures of precursors and extra-hierarchical porous structures on tube walls.In the ST-DDLGC/PMS system,the degradation efficiency of capecitabine(CAP)reached~97.3%within 120 min.Moreover,ST-DDLGCs displayed high catalytic activity over a wide pH range of 3–9,and strong anti-interference to these typical and ubiquitous anions in wastewater and natural water bodies(i.e.,H_(2)PO_(4)^(-),NO_(3)^(-),Cl^(-) and HCO_(3)^(-)),in which a ^(1)O_(2)-dominated oxidation was identified and non-radical mechanisms were deduced.Additionally,ST-DDLGC-based coin-type symmetrical supercapacitors exhibited outstanding electrochemical performance,with specific capacitances of up to 328.1 F g^(-1)at 0.5 A g^(-1),and cycling stability of up to 98.6%after 10,000 cycles at a current density of 2 A g^(-1).The superior properties of ST-DDLGCs could be attributed to the unique porous tubular structure,which facilitated mass transfer and presented numerous active sites.The results highlight ST-DDLGCs as a potential candidate for constructing inexpensive and advanced environmentally functional materials and energy storage devices. 展开更多
关键词 Ganoderma lucidum residue Porous carbon nanotubes Self-template method Wastewater treatment Supercapacitor electrode
在线阅读 下载PDF
Efficient simultaneous removal of diesel particulate matter and hydrocarbons from diesel exhaust gas at low temperatures over Cu–CeO_(2)/Al_(2)O_(3) coupling with dielectric barrier discharge plasma
5
作者 任保勇 方世玉 +7 位作者 张甜甜 孙燕 高尔豪 李晶 吴祖良 朱佳丽 王伟 姚水良 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第5期100-109,共10页
Diesel particulate matter(DPM)and hydrocarbons(HCs)emitted from diesel engines have a negative affect on air quality and human health.Catalysts for oxidative removal of DPM and HCs are currently used universally but t... Diesel particulate matter(DPM)and hydrocarbons(HCs)emitted from diesel engines have a negative affect on air quality and human health.Catalysts for oxidative removal of DPM and HCs are currently used universally but their low removal efficiency at low temperatures is a problem.In this study,Cu-doped CeO_(2) loaded on Al_(2)O_(3) coupled with plasma was used to enhance low-temperature oxidation of DPM and HCs.Removals of DPM and HCs at 200℃ using the catalyst were as high as 90%with plasma but below 30%without plasma.Operando plasma diffuse reflectance infrared Fourier transform spectroscopy coupled with mass spectrometry was conducted to reveal the functional mechanism of the oxygen species in the DPM oxidation process.It was found that Cu-CeO_(2) can promote the formation of adsorbed oxygen(M^(+)-O_(2)^(-))and terminal oxygen(M=O),which can react with DPM to form carbonates that are easily converted to gaseous CO_(2).Our results provide a practical plasma catalysis technology to obtain simultaneous removals of DPM and HCs at low temperatures.M+O-2Diesel particulate matter(DPM)and hydrocarbons(HCs)emitted from diesel engines have a negative affect on air quality and human health.Catalysts for oxidative removal of DPM and HCs are currently used universally but their low removal efficiency at low temperatures is a problem.In this study,Cu-doped CeO_(2) loaded on Al_(2)O_(3) coupled with plasma was used to enhance low-temperature oxidation of DPM and HCs.Removals of DPM and HCs at 200°C using the catalyst were as high as 90%with plasma but below 30%without plasma.Operando plasma diffuse reflectance infrared Fourier transform spectroscopy coupled with mass spectrometry was conducted to reveal the functional mechanism of the oxygen species in the DPM oxidation process.It was found that Cu–CeO_(2) can promote the formation of adsorbed oxygen(–)and terminal oxygen(M=O),which can react with DPM to form carbonates that are easily converted to gaseous CO_(2).Our results provide a practical plasma catalysis technology to obtain simultaneous removals of DPM and HCs at low temperatures. 展开更多
关键词 diesel PM plasma catalysis Cu-CeO_(2)/Al_(2)O_(3) DRIFTS-MS synergy effect
在线阅读 下载PDF
Insights into the biogenic amine-generating microbes during two different types of soy sauce fermentation as revealed by metagenome-assembled genomes
6
作者 Guiliang Tan Yi Wang +7 位作者 Min Hu Xueyan Li Xiangli Li Ziqiang Pan Mei Li Lin Li Ziyi Zheng Lei Shi 《Food Science and Human Wellness》 2025年第3期998-1007,共10页
In-depth knowledge of the microbes responsible for biogenic amine(BA)production during soy sauce fermentation remains limited.Herein,the variations in the BA profiles,microbial communities,and microbes involved in BA ... In-depth knowledge of the microbes responsible for biogenic amine(BA)production during soy sauce fermentation remains limited.Herein,the variations in the BA profiles,microbial communities,and microbes involved in BA production during the fermentation of soy sauce through Japanese-type(JP)and Cantonese-type(CP)processes were compared.BA analysis revealed that the most abundant BA species were putrescine,tyramine,and histamine in the later three stages(1187.68,785.16,and 193.20 mg/kg on average,respectively).The BA profiles differed significantly,with CP samples containing higher contents of putrescine,tyramine,and histamine(P<0.05)at the end of fermentation.Metagenomic analysis indicated that BA-producing genes exhibited different abundance profiles,with most genes,including spe A,spe B,arg,spe E,and tyr DC,having higher abundances in microbial communities during the CP process.In total,15 high-quality metagenome-assembled genomes(MAGs)were retrieved,of which 10 encoded at BA production-related genes.Enterococcus faecium(MAG10)and Weissella paramesenteroides(MAG5)might be the major tyramine producers.The high putrescine content in CP might be associated with the high abundance of Staphylococcus gallinarum(MAG8).This study provides a comprehensive understanding of the diversity and abundance of genes involved in BA synthesis,especially at the species level,during food fermentation. 展开更多
关键词 Soy sauce fermentation Biogenic amine Amine-producing genes Metagenome-assembled genomes
在线阅读 下载PDF
RhB Adsorption Performance of Magnetic Adsorbent Fe_3O_4/RGO Composite and Its Regeneration through A Fenton-like Reaction 被引量:11
7
作者 Yalin Qin Mingce Long +1 位作者 Beihui Tan Baoxue Zhou 《Nano-Micro Letters》 SCIE EI CAS 2014年第2期125-135,共11页
Adsorption is one of the most effective technologies in the treatment of colored matter containing wastewater. Graphene related composites display potential to be an effective adsorbent. However, the adsorption mechan... Adsorption is one of the most effective technologies in the treatment of colored matter containing wastewater. Graphene related composites display potential to be an effective adsorbent. However, the adsorption mechanism and their regeneration approach are still demanding more efforts. An effective magnetically separable absorbent, Fe3O4 and reduced graphene oxide(RGO) composite has been prepared by an in situ coprecipitation and reduction method. According to the characterizations of TEM, XRD, XPS, Raman spectra and BET analyses, Fe3O4 nanoparticles in sizes of 10-20 nm are well dispersed over the RGO nanosheets, resulting in a highest specific area of 296.2 m2/g. The rhodamine B adsorption mechanism on the composites was investigated by the adsorption kinetics and isotherms. The isotherms are fitting better by Langmuir model, and the adsorption kinetic rates depend much on the chemical components of RGO. Compared to active carbon, the composite shows 3.7 times higher adsorption capacity and thirty times faster adsorption rates. Furthermore,with Fe3O4 nanoparticles as the in situ catalysts, the adsorption performance of composites can be restored by carrying out a Fenton-like reaction, which could be a promising regeneration way for the adsorbents in the organic pollutant removal of wastewater. 展开更多
关键词 Magnetic adsorbent Fe3O4 nanoparticles Reduced grapheme oxide Fenton-likereaction REGENERATION
在线阅读 下载PDF
Biomass-derived porous carbon highly efficient for removal of Pb(Ⅱ) and Cd(Ⅱ) 被引量:13
8
作者 Anqi Wang Zhikeng Zheng +4 位作者 Ruiqi Li Di Hu Yiran Lu Huixia Luo Kai Yan 《Green Energy & Environment》 SCIE CSCD 2019年第4期414-423,共10页
The utilization of abundant and renewable biomass to fabricate advanced functional materials is considered a promising route for environmental applications.Herein,Lignin-based porous carbon with layered graphene-like ... The utilization of abundant and renewable biomass to fabricate advanced functional materials is considered a promising route for environmental applications.Herein,Lignin-based porous carbon with layered graphene-like structure(LPC)is successfully synthesized and applied to efficiently remove Pb(Ⅱ)and Cd(Ⅱ).The as-synthesized LPC materials are systematically characterized and these results show that LPC has a porous graphene-like structure,facilitating the diffusion and immobilization of heavy metal ions.The influence of different reaction parameters(solution pH,initial concentration of metal ions,contact time and adsorbent amount)on the adsorption performance is investigated in details.The results demonstrate that LPC can achieve superior adsorption capacities of 250.5 mg·g^-1 for Pb(Ⅱ)and 126.4 mg·g^-1 for Cd(Ⅱ),which are far superior to the previously reported adsorbents.Pseudo-second order kinetics model and Freundlich isotherm model describe the adsorption process well.Furthermore,the exhausted LPC can be regenerated easily and exhibits the removal efficiency of 96%and 92%for Pb(Ⅱ)and Cd(Ⅱ)after five continuous runs,respectively.This study shows a sustainable strategy for the design of porous carbon material from na?ve biomass and highlights the great potential in wastewater treatment. 展开更多
关键词 POROUS carbon LAYERED structure HEAVY METALS Adsorption kinetics RECYCLABILITY
在线阅读 下载PDF
MOF-derived Co-MOF,O-doped carbon as trifunctional electrocatalysts to enable highly efficient Zn-air batteries and water-splitting 被引量:11
9
作者 Xinde Duan Na Pan +5 位作者 Can Sun Kexin Zhang Xukun Zhu Mingdao Zhang Li Song Hegen Zheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期290-298,共9页
Development of high-efficiency non-noble electrocatalysts for oxygen reduction reaction(ORR),oxygen evolution reaction(OER)and hydrogen evolution reaction(HER)is urgently needed for high-performance Zn-air batteries a... Development of high-efficiency non-noble electrocatalysts for oxygen reduction reaction(ORR),oxygen evolution reaction(OER)and hydrogen evolution reaction(HER)is urgently needed for high-performance Zn-air batteries and overall water splitting.Here,a facile strategy to synthesize novel Co-MOF,O-doped carbon(Co-MOF-T)based on Zn,Co-doped glucosamine and ZIF-8 by pyrolysis at temperature T was demonstrated.The prepared Co-MOF-800 showed a superior oxygen reduction reaction(ORR)activity comparable to that of commercial Pt/C catalyst.In addition,this catalyst shows great potential in the overall water splitting due to the excellent oxygen evolution reaction(OER)and hydrogen evolution reaction(HER)activities.Based on the trifunctional activity,the primary Zn-air batteries using a Co-MOF-800 air electrode achieved a high open-circuit voltage of 1.38 V,a specific capacity of 671.6 mAh g^(-1) Zn,and a prominent peak power density of 144 mW cm^(-2).Also,the rechargeable Zn-air batteries based on CoMOF-800 air electrode could be smoothly run for 510 cycles with a low voltage gap of 0.58 V.Finally,the trifunctional Co-MOF-800 catalyst was applied to boost the electrochemical water splitting,demonstrating its promising potential as a green energy material for practical applications. 展开更多
关键词 Metal-organic frameworks Carbon catalysts Trifunctional electrocatalyst Metal-air batteries Water splitting
在线阅读 下载PDF
Factors influencing the concentration of negative air ions during the year in forests and urban green spaces of the Dapeng Peninsula in Shenzhen, China 被引量:13
10
作者 Yafei Wang Zhuobiao Ni +3 位作者 Di Wu Chen Fan Jiaqi Lu Beicheng Xia 《Journal of Forestry Research》 SCIE CAS CSCD 2020年第6期2537-2547,共11页
Negative air ions(NAIs)benefit the mental and physical health of humans,but rapid urbanization can decrease the abundance of NAIs.Quantifying the spatial and seasonal distribution of NAIs and determining the factors t... Negative air ions(NAIs)benefit the mental and physical health of humans,but rapid urbanization can decrease the abundance of NAIs.Quantifying the spatial and seasonal distribution of NAIs and determining the factors that infl uence the concentration during urbanization is thus essential.In the present study of a typical developing urban district in southern China,negative air ion concentrations(NAICs)in 60 forests sites and 30 urban green spaces were quantifi ed on seven consecutive days in each of the four seasons.Large seasonal variations in NAIC were revealed in forests and urban green spaces with trough values in summer.NAIC progressively decreased from forests to urban green spaces and was infl uenced by local land morphology,vegetation characteristics,and climatic factors.The vast,heavily vegetated northeastern region was the richest area for NAIs,whereas the narrow central region(urbanized area)was the poorest,implying dramatic impacts of urbanization on the spatial distribution of NAIs.The relationship between air temperature and NAIC was better fi tted with a quadratic equation than a linear equation.Moreover,the NAIC was more sensitive to local morphology in urban green spaces than in urban forests,indicating the vulnerability of NAIs in urbanized areas.Therefore,the appropriate design of local urban morphology is critical. 展开更多
关键词 FORESTS Negative air ion concentration Urban green spaces SHENZHEN
在线阅读 下载PDF
Effect of Gold Nanoparticles on the Photocatalytic and Photoelectrochemical Performance of Au Modified BiVO_4 被引量:8
11
作者 Mingce Long Jingjing Jiang +3 位作者 Yan Li Ruqiong Cao Liying Zhang Weimin Cai 《Nano-Micro Letters》 SCIE EI CAS 2011年第3期171-177,共7页
An efficient visible light driven photocatalyst, gold nanoparticles(NPs) modified Bi VO_4(Au/Bi VO_4), has been synthesized by deposition-precipitation with urea method. Au/Bi VO_4 exhibits enhanced photocatalytic act... An efficient visible light driven photocatalyst, gold nanoparticles(NPs) modified Bi VO_4(Au/Bi VO_4), has been synthesized by deposition-precipitation with urea method. Au/Bi VO_4 exhibits enhanced photocatalytic activity for phenol degradation underλ>400 nm irradiation but negligible activity underλ>535 nm,indicating that the surface plasmon resonance(SPR) effect is too weak for organic photodegradation. According to the photoelectrochemical results of the porous powder electrodes of Bi VO_4 and Au/Bi VO_4, the SPR effect of Au NPs has been assessed. The role of Au NPs as electron sinks or sources, which is controllable by incident photon energy and applied potentials, has been discussed. 展开更多
关键词 Visible light Gold nanoparticles BIVO4 Surface plasmonic resonance PHOTOCURRENT
在线阅读 下载PDF
The Inhibition Effect of Tert-Butyl Alcohol on the TiO_2 Nano Assays Photoelectrocatalytic Degradation of Different Organics and Its Mechanism 被引量:4
12
作者 Xuejin Li Jinhua Li +3 位作者 Jing Bai Yifan Dong Linsen Li Baoxue Zhou 《Nano-Micro Letters》 SCIE EI CAS 2016年第3期221-231,共11页
The inhibition effect of tert-butyl alcohol(TBA), identified as the·OH radical inhibitor, on the TiO_2 nano assays(TNA) photoelectrocatalytic oxidation of different organics such as glucose and phthalate was repo... The inhibition effect of tert-butyl alcohol(TBA), identified as the·OH radical inhibitor, on the TiO_2 nano assays(TNA) photoelectrocatalytic oxidation of different organics such as glucose and phthalate was reported. The adsorption performance of these organics on the TNA photoelectrode was investigated by using the instantaneous photocurrent value, and the degradation property was examined by using the exhausted reaction. The results showed that glucose exhibited the poor adsorption and easy degradation performance, phthalate showed the strong adsorption and harddegradation, but TBA showed the weak adsorption and was the most difficult to be degraded. The degradation of both glucose and phthalate could be inhibited evidently by TBA. But the effect on glucose was more obvious. The different inhibition effects of TBA on different organics could be attributed to the differences in the adsorption and the degradation property. For instance, phthalate of the strong adsorption property could avoid from the capture of·OH radicals by TBA in TNA photoelectrocatalytic process. 展开更多
关键词 TERT-BUTYL alcohol PHOTOELECTROCATALYSIS TiO2 NANO assays HYDROXYL RADICAL inhibitor Inhibition effect
在线阅读 下载PDF
Synergistic effect of the metal-support interaction and interfacial oxygen vacancy for CO_(2) hydrogenation to methanol over Ni/In_(2)O_(3) catalyst:A theoretical study 被引量:5
13
作者 Chenyang Shen Qianqian Bao +5 位作者 Wenjuan Xue Kaihang Sun Zhitao Zhang Xinyu Jia Donghai Mei Chang-jun Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期623-629,共7页
Indium oxide supported nickel catalyst has been experimentally confirmed to be highly active for CO_(2) hydrogenation towards methanol.In this work,the reaction mechanism for CO_(2) hydrogenation to methanol has been ... Indium oxide supported nickel catalyst has been experimentally confirmed to be highly active for CO_(2) hydrogenation towards methanol.In this work,the reaction mechanism for CO_(2) hydrogenation to methanol has been investigated on a model Ni/In_(2)O_(3) catalyst,i.e.,Ni_(4)/In_(2)O_(3),via the density functional theory(DFT)study.Three possible reaction pathways,i.e.,the formate pathway,CO hydrogenation and the reverse water-gas-shift(RWGS)pathways,have been examined on this model catalyst.It has been demonstrated that the RWGS pathway is the most theoretically-favored for CO_(2) hydrogenation to methanol.The complete RWGS pathway follows CO_(2)+6 H→COOH+5 H→CO+H_(2)O+4 H→HCO+H_(2)O+3 H→H_(2)CO+H_(2)O+2 H→H_(3)CO+H_(2)O+H→H_(3)COH+H_(2) O.Furthermore,it has been also proved that the interfacial oxygen vacancy can serve as the active site for boosting the CO_(2) adsorption and charge transfer between the nickel species and indium oxide,which synergistically promotes the consecutive CO_(2) hydrogenation towards methanol. 展开更多
关键词 CO_(2)hydrogenation Indium oxide Nickel Methanol synthesis Oxygen vacancy Density functional theory
在线阅读 下载PDF
The Promotion Effect of Low-Molecular Hydroxyl Compounds on the Nano-Photoelectrocatalytic Degradation of Fulvic Acid and Mechanism 被引量:4
14
作者 Yifan Dong Jinhua Li +1 位作者 Xuejin Li Baoxue Zhou 《Nano-Micro Letters》 SCIE EI CAS 2016年第4期320-327,共8页
A significant promotion effect of low-molecular hydroxyl compounds(LMHCs) was found in the nano-photoelectrocatalytic(NPEC) degradation of fulvic acid(FA),which is a typical kind of humic acid existing widely in natur... A significant promotion effect of low-molecular hydroxyl compounds(LMHCs) was found in the nano-photoelectrocatalytic(NPEC) degradation of fulvic acid(FA),which is a typical kind of humic acid existing widely in natural water bodies,and its influence mechanism was proposed.A TiO_2 nanotube arrays(TNAs) material is served as the photoanode.Methanol,ethanediol,and glycerol were chosen as the representative of LMHCs in this study.The adsorption performance of organics on the surface of TNAs was investigated by using the instantaneous photocurrent value.The adsorption constants of FA,methanol,ethanediol,and glycerol were 43.44,19.32,7.00,and 1.30,respectively,which indicates that FA has the strongest adsorption property.The degradation performance of these organics and their mixture were observed in a thin-layer reactor.It shows that FA could hardly achieve exhausted mineralization alone,while LMHCs could be easily oxidized completely in the same condition.The degradation degree of FA,which is added LMHCs,improves significantly and the best promotion effect is achieved by glycerol.The promotion effect of LMHCs in the degradation of FA could be contributed to the formation of a tremendous amount of hydroxyl radicals in the NPEC process.The hydroxyl radicals could facilitate the complete degradation of both FA and its intermediate products.Among the chosen LMHCs,glycerol molecule which has three hydroxyls could generate the most hydroxyl radicals and contribute the best effective promotion.This work provides a new way to promote the NPEC degradation of FA and a direction to remove humus from polluted water. 展开更多
关键词 Fulvic acid Nano-photoelectrocatalytic degradation Promotion effect Low-molecular hydroxyl compounds
在线阅读 下载PDF
Preparation and Characterization of Freestanding Hierarchical Porous TiO_2 Monolith Modified with Graphene Oxide 被引量:4
15
作者 Lei Wan Mingce Long +2 位作者 Dongying Zhou Liying Zhang Weimin Cai 《Nano-Micro Letters》 SCIE EI CAS 2012年第2期90-97,共8页
Catalyst recovery is one of the most important aspects that restrict the application of Ti O_2 photocatalyst. In order to reduce restrictions and improve the photocatalytic efficiency, a hierarchical porous Ti O_2 mon... Catalyst recovery is one of the most important aspects that restrict the application of Ti O_2 photocatalyst. In order to reduce restrictions and improve the photocatalytic efficiency, a hierarchical porous Ti O_2 monolith(PTM) with well-defined macroporous and homogeneous mesoporous structure was prepared by using a sol-gel phase separation method. P123 was used as the mesoporous template and graphene oxide was applied to increase the activity and integrity of the monolithic Ti O_2. According to scanning electron microscopy and the Barrett-Joyner-Halenda measurements, PTM_3 is mainly composed of 10 nm anatase crystallines with3.6 nm mesopores and 2-8 μm macropores. Further characterization suggests carbon and nitrogen have been maintained in the PTM during calcinations so as to induce the visible light activity. The PTM with 0.07 wt%graphene oxide dosage shows high efficiency for methyl orange(MO) decolorization under both full spectrum and visible light irradiation(λ >400 nm). Besides, the monolith remains intact and has good photocatalytic stability after four cyclic experiments. 展开更多
关键词 PHOTOCATALYSIS Titanium dioxide Porous monolith Graphene oxide
在线阅读 下载PDF
D-band frontier: A new hydrogen evolution reaction activity descriptor of Pt single-atom catalysts 被引量:2
16
作者 Guangming Zhan Yancai Yao +3 位作者 Fengjiao Quan Huayu Gu Xiao Liu Lizhi Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第9期203-209,I0007,共8页
Hydrogen evolution reaction(HER) is crucial for achieving sustainable development and carbon neutrality, and thus demands efficient catalysts, which necessitates fundamental theory to relieve trial-and-error experimen... Hydrogen evolution reaction(HER) is crucial for achieving sustainable development and carbon neutrality, and thus demands efficient catalysts, which necessitates fundamental theory to relieve trial-and-error experiment. To fast screen HER candidates, most studies focus on d-band center(ε)associated with the Gibbs energy of H* adsorption(ΔG). Unfortunately, εrule is not applicable to Pt single atoms on transition metal disulfides(Pt_(1)/TMDs) because of the additional contributions from p states of S atom. Here, we propose a new HER descriptor — d-band frontier(d) by defining the weight of d-band in the energy range of [-1.0 eV, 1.0 eV] of Pt single atoms. This dis exactly correlated with the ΔGof Pt_(1)/TMDs, and thus perfectly describes the structure–activity relationship, as validated by systematical experimental evidences. Moreover, this ddescriptor can be extended to Pt single atoms anchored on other supports(e.g., CN, C, MoO, and CoO), indicating its promising generality. 展开更多
关键词 Hydrogen evolution reaction Single atoms Transition metal disulfides DESCRIPTOR
在线阅读 下载PDF
Atomic level engineering of noble metal nanocrystals for energy conversion catalysis 被引量:2
17
作者 Yancai Yao Shiqi Wang +1 位作者 Zhijun Li Yuen Wua 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第12期604-624,I0014,共22页
It is commonly known that the performance of electrocatalysts is largely influenced by the size,morphology,composition,and crystalline phase of noble metal nanocrystals.However,the limited reserves and high cost of no... It is commonly known that the performance of electrocatalysts is largely influenced by the size,morphology,composition,and crystalline phase of noble metal nanocrystals.However,the limited reserves and high cost of noble metals largely restrict their industrial applications.Along with the development of characterization techniques,theoretical calculations,and advanced material synthesis methods,modulating the electrocatalytic properties of noble metal nanocrystals at the atomic scale(e.g.,monolayer/sub-monolayer,single-atom alloy,ultrafine structure)has been flooding out.Engineering noble metal nanocrystals at the atomic level could not only immensely improve the noble metal atom utilization efficiency and lower the cost,but also boost the catalytic performance.In this review,we summarize the recent advanced progresses of regulating the noble metal nanocrystals at the atomic scale towards energy conversion application.Then,the challenges and perspectives of designing noble metal nanocrystals at the atomic scale in the future are discussed and considered.It is expected that this review will inspire scientists to further study precious metal-based materials for energy-oriented catalysis. 展开更多
关键词 Noble metal Atomic regulation Synthetic strategy ELECTROCATALYSIS
在线阅读 下载PDF
Catalytic conversion of lignocellulosic biomass into chemicals and fuels 被引量:20
18
作者 Weiping Deng Yunchao Feng +21 位作者 Jie Fu Haiwei Guo Yong Guo Buxing Han Zhicheng Jiang Lingzhao Kong Changzhi Li Haichao Liu Phuc T.T.Nguyen Puning Ren Feng Wang Shuai Wang Yanqin Wang Ye Wang Sie Shing Wong Kai Yan Ning Yan Xiaofei Yang Yuanbao Zhang Zhanrong Zhang Xianhai Zeng Hui Zhou 《Green Energy & Environment》 SCIE EI CSCD 2023年第1期10-114,共105页
In the search of alternative resources to make commodity chemicals and transportation fuels for a low carbon future,lignocellulosic biomass with over 180-billion-ton annual production rate has been identified as a pro... In the search of alternative resources to make commodity chemicals and transportation fuels for a low carbon future,lignocellulosic biomass with over 180-billion-ton annual production rate has been identified as a promising feedstock.This review focuses on the state-of-the-art catalytic transformation of lignocellulosic biomass into value-added chemicals and fuels.Following a brief introduction on the structure,major resources and pretreatment methods of lignocellulosic biomass,the catalytic conversion of three main components,i.e.,cellulose,hemicellulose and lignin,into various compounds are comprehensively discussed.Either in separate steps or in one-pot,cellulose and hemicellulose are hydrolyzed into sugars and upgraded into oxygen-containing chemicals such as 5-HMF,furfural,polyols,and organic acids,or even nitrogen-containing chemicals such as amino acids.On the other hand,lignin is first depolymerized into phenols,catechols,guaiacols,aldehydes and ketones,and then further transformed into hydrocarbon fuels,bioplastic precursors and bioactive compounds.The review then introduces the transformations of whole biomass via catalytic gasification,catalytic pyrolysis,as well as emerging strategies.Finally,opportunities,challenges and prospective of woody biomass valorization are highlighted. 展开更多
关键词 Lignocelullose BIOMASS Catalytic conversion Biofuels Renewable chemicals
在线阅读 下载PDF
Ti-Fe_(2)O_(3)/Ni(OH)_(x) as an efficient and durable photoanode for the photoelectrochemical catalysis of PET plastic to formic acid 被引量:1
19
作者 Xin Li Jianying Wang +2 位作者 Mingze Sun Xufang Qian Yixin Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期487-496,I0014,共11页
Photoelectrochemical(PEC) technology provides a promising prospect for the transformation of polyethylene terephthalate(PET) plastic wastes to produce value-added chemicals.The PEC catalytic systems with high activity... Photoelectrochemical(PEC) technology provides a promising prospect for the transformation of polyethylene terephthalate(PET) plastic wastes to produce value-added chemicals.The PEC catalytic systems with high activity,selectivity and long-term durability are required for the future up-scaling industrial applications.Herein,we employed the interfacial modification strategy to develop an efficient and stable photoanode and evaluated its PEC activity for ethylene glycol(EG,derived from PET hydrolysate) oxidation to formic acid.The interfacial modification between Fe_(2)O_(3)semiconductor and Ni(OH)xcocatalyst with ultrathin TiO_(x) interlayer not only improved the photocurrent density by accelerating the kinetics of photogenerated charge carriers,but also kept the high Faradaic efficiency(over 95% in 30 h) towards the value-added formic acid product.This work proposes an effective method to promote the PEC activity and enhance the long-term stability of photoelectrodes for upcycling PET plastic wastes. 展开更多
关键词 Plastic waste Formic acid Photoelectrochemical catalysis High durability Interfacial modification
在线阅读 下载PDF
Highly-efficient and autocatalytic reduction of NaHCO_3 into formate by in situ hydrogen from water splitting with metal/metal oxide redox cycle 被引量:1
20
作者 Guodong Yao Jia Duo +4 位作者 Binbin Jin Heng Zhong Lingyun Lyu Zhuang Ma Fangming Jin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第5期881-890,共10页
The Earth’s sustainable development is threatened by the increasing atmospheric COlevel which can be attributed to the imbalance of COdue to the rapid consumption of fossil fuels caused by human activities and the sl... The Earth’s sustainable development is threatened by the increasing atmospheric COlevel which can be attributed to the imbalance of COdue to the rapid consumption of fossil fuels caused by human activities and the slow absorption and conversion of COby nature. One of the efficient methods for reconstructing the balance of COshould involve the rapid conversion of COinto fuels and chemicals.The hydrogenation of COwith gaseous hydrogen is currently considered to be the most commercially feasible synthetic route, however, the supply of safe and economical hydrogen sources poses a significant challenge to up-scaling application. Direct utilization of hydrogen from dissociation of water, the most abundant, cheap and clean hydrogen resource, for the reduction of COwould be one of the most promising approaches for COutilization. This paper provides an overview of the current advances in research on highly efficient reduction of COor NaHCO, a representative compound of CO, into formic acid/formate by in situ hydrogen from water dissociation with a metal/metal oxide redox cycle under mild hydrothermal conditions. 展开更多
关键词 CO2 reduction FORMATE Water splitting Metal/metal oxide cycle Hydrothermal conversion
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部